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Abstract

Log-linear models provide a convenient method for coupling existing ma-
chine learning methods to constraint-based linguistic formalisms like optimal-
ity theory and harmonic grammar. While the learning methods themselves
have been well studied in this domain, the question of how these constraints
originate is often left unanswered. We present a novel, error-driven approach
to constraint induction that performs lightweight decisions based on local in-
formation. When evaluated on the task of reproducing human gradient phono-
tactic judgements, a model trained with this procedure can sometimes nearly
match the performance of state-of-the-art methods that rely on global infor-
mation and individual assessment of all possible constraints. We conclude
by discussing methods for incorporating context and linguistic bias into the
induction scheme to produce more accurate grammars.

1 Introduction

Log-linear models, also known as maximum entropy models in NLP, have been suc-
cessfully applied to many linguistic and language-related problems (in part-of-speech
tagging [10], named entity recognition [2], and parsing [13]). They have also enjoyed
a long history of use as the basis for models of phonological grammar, being first ap-
plied to phonology by Goldwater & Johnson [3], and subsequently [14], [5], amongst
others.

Since these models consist only of a set of weighted features, they are inher-
ently similar to Harmonic Grammar (HG; see overviews in [12], [8]) and a natural
candidate for coupling established learning methods to this linguistic formalism. In-
deed, previous work has examined the behavior of standard learning algorithms in
this domain [1], and have incorporated additional machine learning concepts, like
regularization [7], into the learning of phonological grammar with hidden metrical
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structures. However, the more fundamental question of where these constraints orig-
inate is often ignored.

A counterexample is the work of Hayes and Wilson (H&W; [14]), in which a
constraint induction procedure 1 is used to bootstrap, from an empty constraint set,
a phonological grammar capable of capturing the gradience of human phonotactic
predictions. In this approach the learner is only exposed to a set of observed onset
clusters, and is aware of the natural classes of phonetic features associated with each
phoneme. Induction occurs by iterating over all the observed clusters, and measuring
the usefulness of each possible constraint on the whole of the data. A small set of
constraints that are deemed to be most appropriate are selected, based on multiple
thresholds, and added to the constraint set. The constraints themselves are composed
of logical combinations of the natural classes of their contained phonemes. This
procedure is similar in spirit to much of the work on feature induction for similar
models in the statistical literature [9], and for conditional-random fields [6].

This is a very effective learning strategy, but it gains that effectiveness at the
cost of computational efficiency, and the number of hypothesis that must be simul-
taneously considered is very large. As it is unclear if the human learning mechanism
could cope with these large computational burdens, this approach may be ill-suited
as a cognitive model of the human language acquisition process. And it is important
to note that while this approach takes a very top-down, or global strategy, it is not
guaranteed to be optimal, as it does not consider interactions between constraints at
each induction step, and to reason over all possible subsets of all possible constraints
would be absolutely infeasible. Therefore both this induction strategy and the one
we will introduce below are both, to one degree or another, approximations of the
optimal learner.

We propose an alternative learning strategy in which constraint induction is a
fundamentally error-driven process that occurs at a comparably local level, removing
a great deal of the computational overhead of more global approaches. Under this
strategy both constraint induction and the adjustment of the constraint weights
can be explained by the same contrastive mechanism: when a form is observed
a neighborhood of phonetically similar forms are produced. If the model rates a
neighboring form as more acceptable than the observed form, the constraint weights
are updated. Optionally, a constraint induction process is performed in which the
differences between the two forms are exploited to limit the scope of the constraint
induction decision, as the distinctive features that distinguish the winning form from
the observed form must form the basis of the appropriate constraints.

1Where a phonological constraint in the grammar corresponds directly to a feature in the log-
linear model.
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Hence this method does not unambiguously select optimal constraints, but in-
stead determines with high precision where to start the search, and can easily reduce
the number of hypothesized constraints by orders of magnitude. We show that
this method can, although with higher variance, often provide gradient phonotactic
judgements competitive with the more global, state-of-the-art approach of H&W.
We introduce a method for determining when to update feature weights and when to
induce constraints, and find that together with a small history, and the use of non-
uniform priors, we are able to mitigate the larger amount of variance in the model’s
solutions. The benefits gained from caching a small history support the notion that
learning might occur in brief clusters of particularly helpful examples [11].

2 Log-linear Models of Phonological Grammars

Log-linear models, as we will discuss here, can be useful for efficient estimation of
conditional parameters, and classification of a piece of data based on its characteris-
tics. These characteristics are known as features in the machine learning literature,
and as constraints when phrased as a model of phonotactic grammar. During train-
ing the weights of these constraints are adjusted such that a function over them will
maximize the probability of placing the correct label to each example.

The form of the model is:

P (x) =
e−h(x)∑N
n e−h(n)

(1)

Where h(x) is a score function, x is an example form, and n ∈ N represents an
enumeration over all the possible forms. This formula describes the probability of the
example form x as the negated an exponentiated score h(x) of the form, normalized
by the sum of all such scores. We can largely ignore the normalization because we
in learning we are focused only on the unnormalized scores, known as harmony in
harmonic grammar:

h(x) =
F∑
i=1

wiCi(x) (2)

For example x, with constraints C1 to CF , where F is the size of the constraint
set, the score is the sum of each constraint weight, wi, multiplied by its count Ci -
the number of times the constraint is violated in example x.
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2.1 Learning with the Perceptron Update

In this section we describe, primarily through example, how the model assigns prob-
ability mass to examples, and how the model can learn via the perceptron update
method.

Iteration 1:

/pa/ *-voice (w1 = 2.0) *+voiced (w2 = 1.5) *+lab (w3 = 1.0) score, h(x) e−h(x)

/pa/ 1 (+2.0) 1 (+1.5) 1 (+1.0) 4.5 .011
→ /ba/ 0 (+0.0) 2 (+3.0) 1 (+1.0) 4.0 .018

The model selects /ba/ as the optimal candidate by assigning it a lower score
h(x), or a higher e−h(x), based on the current feature weights. Because our preferred
form is /pa/, the model has made an error, and this erroneous classification triggers
a perceptron update step.

The perceptron update itself is quite simple. First, we compute the vector con-
taining the difference between the counts of the winning example and the counts of
the preferred example:

*-voice *+voiced *+lab
/pa/ - /ba/ 0 - 1 = - 1 2 - 1 = 1 1 - 1 = 0

The weight parameter is then updated by incrementing each weight by the count
difference in this vector 2. Alternatively the perceptron update can . In this example
the weight of *[+voice] is updated from its original value of 1.5, to 2.5, based on the
count vector difference of 1. When we reevaluate the candidates with the updated
model, we find that the model now selects the correct form:

Iteration 2:

/pa/ *-voice (w1 = 1.0) *+voiced (w2 = 2.5) *+lab (w3 = 1.0) score, h(x) e−h(x)

→ /pa/ 1 (+1.0) 1 (+2.5) 1 (+1.0) 4.5 .011
/ba/ 0 (+0.0) 2 (+5.0) 1 (+1.0) 6.0 .002

2The update is often phrased as the product of the difference counts with a learning rate, τ ,
with this example representing a special case where τ = 1.0.
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In contrast to H&W, and the gradient descent / stochastic gradient descent ap-
proaches to log-linear training, it is important to note that the perceptron update
is fundamentally local in nature: it operates over small contrastive neighborhoods,
and therefore does not have the same convergence guarantees as that have a more
global optimization function.

3 Plausibility of Global Decisions

Constraint induction, the process by which constraints are added to the model, can
be a deceiving term. While the nomenclature may conjure the notion that these
constraints are carefully constructed to improve the model, in domains where the
space of constraints are small induction is much more appropriately phrased as a
search: In what order will we explore the space. When we restrict the notion of a
phonological grammar to focus only on English onset clusters, we find ourselves in
such a domain; though the space is still extremely large, it is feasibly enumerable.

This leads us to the global, “bird’s-eye view” approach, where, given some mea-
sure of how useful a constraint is, we can enumerate all constraints and choose to
add all constraints whose usefulness is above some threshold. The problem is not
entirely that simple, as there are many metrics we could use to gauge the usefulness
of each constraint, and this usefulness might depend on the weights of the current
features in the grammar, which are constantly changing.

Prominent work in constraint induction for log-linear models takes this approach
[14] and we take this work as a constant point of comparison throughout this paper.
The particular measure used, for a constraint Ci is the observed number of violations
in the corpus, O[Ci], minus the expected number, E[Ci]. For the observed counts
we can simply enumerate over the corpus and collect this statistic exactly. For the
expected counts we must sum the number of constraint violations over all possible
forms. A more feasible approximation is to cap the number of possible forms to those
of length n and under, where n is the length of the longest form in the observed data
(see [4] for similar approximation to the global partition function).

3.1 Exploring the Constraint Space: Formalization & Bounds

Even with these restricted bounds, the constraint space is large, forcing the calcu-
lation O[Ci] − E[Ci] over all constraints i ∈ |C| to be a very burdensome measure
both in terms of complexity and space. Examining the size of these spaces explicitly,
our task begins with a sound inventory of 24 distinct phones. Each phone marks a
subset of 15 unique binary (+/-) articulatory features (often referred to as distinctive
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features, in this work these features are consonantal, approximate, sonorant, contin-
uant, nasal, voice, spread, labial, coronal, anterior, strident, lateral, dorsal, high, and
back). A constraint formed over a single phone (we will sometime refer to this as a
slice) will consist of subsets of these values. In practice a maximum subset size of 3
is capable of capturing many phonological phenomena.

Assuming a constraint marks all distinctive features the possible combinations
would already be quite large, but on average each phone in the data marks about
seven distinctive features (as some features are considered to be not applicable to
some phones, and are not marked). We compute the size of all possible single-slice
constraints as:

(
7
3

)
+
(
7
2

)
+7 = 35 + 21 + 7 = 63

We will complicate this further by adding some additional complexity to the
feature representation. The above calculation treats all subsets as conjunctions of
distinctive features, but it is very natural to use negation to express phonological
constraints (represented here as the ˆsymbol). There are subtle differences in when
these constraints will fire3. This doubles the number of single-silce constraints, and
we will also add one additional option to express wildcard (which will be denoted by
an underscore). This is useful for expressing the semantics like “anything followed
by a sibilant”. Our final number of single-slice constraint possibilities is 127.

But single-slice constraints would have little explanatory power: it’s unlikely
that many, if any, grammatical phones would be unobserved. Only when we move
to clusters of phones is there an appeal to latent constraint-based grammars over
simple unigram counts of observed statistics. Constraints composed of two to three
slices are typical and powerful enough to explain many phenomena in the English
data. With a max slice size of three, the final number of possible constraints becomes
127 + (127)2 + (127)3 = 127 + 16, 129 + 2, 048, 383 = 2, 064, 639 constraints.

It is unclear what spaces are reasonably searchable by the human learner, and
what methods can be considered cognitively plausible. However, we will attempt
to claim that the method of constraint induction we propose has merits as a more
cognitively plausible model given the drastic reduction in size of the spaces the learner
makes decisions from, and the natural way it extends both online learning methods
and traditional harmonic grammar (part of this approach can be viewed as providing
an implementation of the GEN function and exploiting the relationships among the
competing candidates it produces).

3Note that this differs from simply negating the signs of the distinctive features
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4 Error-Driven Constraint Induction

4.1 Constructing Neighborhoods: Minimally-distinguishable
Pairs

The notion of minimal pairs is well-established in phonology, where they are defined
as a pair of words which differ in only one phonological aspect but possess distinct
meanings. Because these words are distinguishable by speakers of the language, the
phonological aspect that differs between them is identified as being salient, and the
two sounds treated as separate phonemes.

We define the notion of a contrastive pair in a somewhat analogous manner. We
define the set of observed/grammatical forms O4, and the set of unobserved/ungrammatical
forms U . A contrastive pair comprises an observed form o ∈ O and an unobserved
form u ∈ U , such that u is the unobserved form most similar to o, e.g. when o = N ,
and U = {NG,ZH}, a contrastive pair is formed when u = NG since it shares more
distinctive features than with ZH. When we know two sounds are represented as
different phonemes, there must be some distinctive feature that distinguishes them.
Similarly when we have a contrastive pair there must be some distinctive feature not
shared between the two forms that can form the basis of a constraint, allowing the
model to distinguish between them.

Central to our hypothesis is that phonotactic competition exists in neighbor-
hoods, and not globally across all possible forms, and that these neighborhoods are
determined by phonetic similarity. Thus N is in competition with NG, and its rela-
tion to other unobserved forms, like ZH is not of direct concern: the constraint most
appropriate for establishing ZH as ungrammatical should come from an observed
form with which it can form a contrastive pair, like Z.

4.1.1 Phonetic Distance

Formulating a measure of phonetic similarity strictly from sets of distinctive features
is nontrivial. In the naive approach, we could simply count the number of binary
“flips’ required to turn the distinctive features of one phone to equal the other 5. We
denote distinctive feature j of the phone at position i in the word w by pi,j(w):

4In this paper all problem setups will assume that the learner will, if given enough examples,
observe all grammatical forms, i.e., there is no held-out data. We will find that this can lead to
troublesome behavior when as the model finds increasingly more specific analyses of the data, a
problem known as over-fitting.

5The Hamming distance between the binary feature vectors.
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Figure 1: Feature set for English consonants, reproduced from Hayes & Wilson 2008

phon-distance(w1, w2) =
F∑
f

i ∈ |w1|

{
1, if pi,f (w1) 6= pi,f (w2)

0, if pi,f (w1) = pi,f (w2)

This metric will turn out to be poorly suited to matching speaker intuitions on
perceived similarity, but this is in part due to the distinctive features’ “optional”
binary representation. For example, sounds that are coronal (made with the blade
of the tongue) may optionally be anterior (the point of articulation lying forward
of the alveolar ridge). Compared to a sound that is not coronal, the sound will be
doubly penalized since the the compared sound is not even in the proper category
to mark this.

A second objection to the binary feature representation is that it does not easily
allow for expressing real-valued relationships amongst distinctive features. For in-
stance, place of articulation features are drawn from a continuum starting from the
front of the mouth, and ending in the throat at the glottis (Fig. 4.1.1. While the
spatial relationship between discrete places may not be useful to the model, removing
that information with a binary feature representation deprives the model of learning
this.

To allow us to compare to previous research the input of the learning algorithm
must remain constant, but we propose a modified phonetic distance metric that is
underlyingly more inspired by a multivalued and tiered representation of phonology
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Figure 2: A graphical depiction showing the inherently continual places of articula-
tion. Here we highlight four particularly prominent places: 1. Labial, 2. Alveolar,
3. Velar, 4. Glottal. Finer-grained distinctions are often posited to provide an ac-
count for a linguistic phenomenon, so while the mapping from this continual, analog
physical space to discrete features can be arbitrary, the order remains faithful. This
illustrates our motivation for real-valued features: it captures the intuition that, all
other features remaining constant, a velar sound (3) will be more dissimilar to a
labial sound (1), than an alveolar (2).
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(see univalent or privative feature representations). Under this metric subcategories
like anteriority are weaker contributors to the distance than their containing category,
and are only included if both phones are within categories that mark it 6

This means for sounds that differ further in place, labial vs dorsal, the distance
will be further than place values that are closer, like labial vs. coronal. Subcategories
like anterior are weaker contributors to the calculated distance. Fig 4.2 shows the
nearest five neighbors for each phone as used in our experiments7.

4.2 Projecting Constraints from Contrastive Pairs

Back to the topic of neighborhood construction, consider the observed form N . Using
the distance function we can generate a distribution over forms in the neighborhood
by exponentiating the inverse of distances and normalizing. Forms which are not in
close phonetic proximity becomes exponentially less likely to be incorporated into a
target form’s neighborhood. We then sample a single form from this distribution and
treat it as a proper contrastive pair. In our example, N will have the neighborhood
distribution consisting primarily of M , NG, TH, T , and S. Naturally many of the
forms in the neighborhood will be positive examples, and constructing constraints
to discern between two positive examples has proven to be problematic, in our own
experience, to learning suitable feature weights using perceptron updates.

We address this concern by preceding learning with a number of burn-in itera-
tions, in which we draw from the English input data distribution (simulating the
act of observing a form) and add it to a history queue. As we perform learning /
constraint induction iterations, each observed form is added to the queue, and all
forms in the queue are excluded from being in a contrastive pair. In our experiments
we use a large number (3,000) of burn-in iterations to guarantee that the learner has
likely been exposed to all common forms in the input data.

And because we construct neighborhoods of forms with the same length as the
observed form, this would narrow the neighborhood down to the unobserved, single-
phone forms: NG, and ZH, where NG, having the shorter distance, would be much
more likely to be sampled.

We phrase constraint induction as an error-driven process (Algorithm 1 describes
the procedure). When the contrastive pair (o,u) is scored using the model’s current

6For reproducibility, disagreement between manner and approximates contributes 3 to the dis-
tance, place and consonant 2, and anteriority contributing 1 if both phones are coronal.

7These neighborhoods are generally in line with the authors’ intuition as speakers of English,
but they have not been objectively compared with studies of human perception measuring the
confusability of these forms.
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Phone Neighborhood Phone Neighborhood
K G (1), T (2), P (2), NG (3), D (3) R L (1), Y (1), W (1), T (6), K (7)
D T (1), G (2), B (2), K (3), DH (3) S TH (0), SH (1), DH (1), Z (1), F (2)
M N (2), NG (2), F (3), P (3), B (4) P B (1), K (2), T (2), M (3), G (3)
B P (1), D (2), G (2), K (3), T (3) S T TH T (0), SH T (1), Z T (1), TH T (1), DH T (1)
HH W HH Y (1), HH R (1), HH L (1), HH L (2), HH Y (2) L R (1), Y (1), W (1), TH (6), T (6)
F V (1), SH (2), S (2), TH (2), M (3) S W S L (1), TH W (1), TH L (1), TH W (1), TH R (1)
HH SH (3), TH (3), DH (3), F (3), ZH (3) JH CH (1), ZH (3), D (4), DH (4), SH (4)
T D (1), P (2), K (2), S (3), G (3) S P TH P (0), DH P (1), TH P (1), TH B (1), Z P (1)
W L (1), R (1), Y (1), P (5), B (6) S M TH M (0), DH M (1), TH M (1), Z M (1), SH M (1)
N M (2), NG (2), TH (3), T (3), S (3) T W T Y (1), T R (1), T L (1), D W (2), D L (2)
V F (1), DH (2), ZH (2), Z (2), HH (3) S L S R (1), TH W (1), TH L (1), TH L (1), S Y (1)
G K (1), D (2), B (2), T (3), P (3) S K TH K (0), TH G (1), Z K (1), S G (1), SH K (1)
T R T W (1), T Y (1), T L (1), T Y (2), D W (2) B R B W (1), B Y (1), B L (1), B Y (2), P R (2)
K R K W (1), K L (1), K Y (1), K Y (2), G Y (2) G R G Y (1), G L (1), G W (1), G Y (2), K R (2)
SH TH (1), ZH (1), S (1), DH (2), F (2) TH R TH W (1), S R (1), S Y (1), TH L (1), S L (1)
CH JH (1), SH (3), S (4), N (4), TH (4) S N TH N (0), DH N (1), TH N (1), Z N (1), SH N (1)
K L K W (1), K R (1), K Y (1), K Y (2), K R (2) F L F Y (1), F R (1), F W (1), V L (2), F Y (2)
Y L (1), R (1), W (1), K (7), T (7) G W G L (1), G Y (1), G R (1), K W (2), K W (2)
F R F Y (1), F L (1), F W (1), V R (2), F Y (2) P R P Y (1), P L (1), P W (1), P Y (2), B L (2)
B L B W (1), B Y (1), B R (1), B Y (2), P R (2) P L P R (1), P Y (1), P W (1), P Y (2), B L (2)
D R D W (1), D L (1), D Y (1), D Y (2), T R (2) K W K Y (1), K R (1), K L (1), G Y (2), K L (2)
TH W TH R (1), TH Y (1), S R (1), S Y (1), TH L (1) TH S (0), SH (1), DH (1), Z (1), F (2)
G L G Y (1), G R (1), G W (1), G Y (2), K L (2) Z DH (0), S (1), ZH (1), TH (1), SH (2)
D W D R (1), D Y (1), D L (1), T W (2), D L (2) DH Z (0), S (1), ZH (1), TH (1), SH (2)

Figure 3: Observed phones and their nearest five neighbors, calculated by the pho-
netic distance described in Section 4.1.1. In practice these neighborhoods are greatly
filtered down by removing observed words, and single phone “clusters” will only have
a couple neighbors, mostly shared across the entire set of single phones. Future work
may look to not remove these forms outright, but to down weight them based on
how recently they had been seen.
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feature weights, if the unobserved form ranks higher than the preferred observed
form, an update is triggered. The difference between the distinctive feature sets
of the two forms is identified and projected out as the basis for new constraints.
For the pair (o=N ,u=NG), this difference is that NG marks [+dors], therefore any
constraint that fires on NG and not on N , precisely the type of constraint the model
could use to downweight NG with respect to N , must contain [+dors].

This observation, in conjunction with the reasonable settings for the parameters
governing maximum distinctive features-per-constraint slice and maximum slices per
constraint, drastically restricts the space of possible constraints to a more feasible
size. In the case of (o = N, u = NG), there is a first implicit induction from the
space of all single-slice constraints (a number we computed in Section 3.1 as 127,
though we will concentrate first only on positive, non-universal constraint slices,
starting from a space of size 63), down to only those relative to the contrastive
pair:

(
5
3

)
+
(
5
2

)
+ 5 = 25 given that NG marks 5 distinctive features. Employing

the heuristic, we consider only the constraints which contain [+dors], reducing the
space to

(
5
2

)
(ways of constructing 3-feature constraints) +5 (ways of constructing 2-

feature constraints) = 15. There are similar reductions when considering the negated
constraints, except that we project off the observed form. Thus we have quartered
the local constraint space down to a size that is considerably more manageable. As
we move into constructing constraints composed of multiple slices these reductions
become far more valuable, as there is exponential growth over the size of the single-
slice constraints.

In order to construct these larger constraints we construct a lattice where each
array in the lattice is the array of possible single-slice constraints (each cell is one
of all possible subsets of binary feature values), and the length of the lattice is the
desired length of the constraint. Enumerating all paths through the lattice yields all
possible constraints of this size.8

Once the set of all possible constraints that meet the heuristic requirements has
been constructed, a small number of constraints are sampled, typically uniformly,
from this pool and added to the model’s constraint set. The augmentation of the
model’s constraint set is immediately followed by a perceptron update.

8This is mostly an implementational detail, and may raise some criticism as to our claim that this
model is less computationally burdensome than Hayes & Wilson when we enumerate a large number
of constraints in each local decision. Because the actual set of constraints induced are sampled from
the lattice-produced collection of constraints, this process could be alternatively implemented using
a weighted finite-state machine as a more lightweight model of the selection process.
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Algorithm 1 Learning Procedure

1: function learn
2: model ← []
3: while learning do
4: o← draw(D)
5: u← draw(neighborhood(o)
6: if model.score(u) > model.score(o) then
7: diff ← u.features \o.features . Constraint Induction
8: cspace← []
9: for c← allconstraints do . Filter Space

10: if c.contains(diff) then
11: cspace+ = c
12: end if
13: model.features+ = draw(space) . Add constraint
14: end for
15: for j ← 0 until model.size do . Perceptron Update
16: model[j] = f.violations(u)− f.violations(o) ∗ rate
17: end for
18: end if
19: end while
20: end function
21:

22: function neighborhood(o)
23: plattice← [o.size]
24: for i← o.size do
25: plattice[i]← o[i].phones . (Phone, Distance) pairs
26: end for
27: return draw(plattice.allPaths) . Sum weight in each path
28: end function
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5 Experiments

Evaluating the contributions of this paper poses a difficult problem, as a clear evalua-
tion should decouple the learning mechanism from the constraint induction procedure
– two aspects of the learner that are inherently linked in our work due to the error-
driven nature of the constraint induction process. In one set of evaluations we will
focus purely on constraint induction, examining a set of constraints induced by the
model, and judge the induction process indirectly by its ability to reduce errors and
improve likelihood. In a second set of evaluations we assess the use of the joint induc-
tion and training on the task of gradient phonological decisions against a collection
of human judgements.

5.1 Constraint Induction

With no gold standard constraints to compare to, we have to focus our attention
toward evaluating the “symptoms” of good constraint evaluation. The mechanism is
error-driven, so if both the constraint induction and weight updates are functioning
properly the frequencies of triggering constraint induction and weight update proce-
dures should decrease. Additionally, as we update the feature weights our intention
is to move probability mass away from the ungrammatical forms - pulling more from
the least likely and less from the somewhat more acceptable. A useful measure of
this is log likelihood, the sum of the log probabilities of each observed form. If the
model is improving the probability of the observed forms should increase. In Fig.
5.1 we plot this information over 500 iterations of learning.

Of course, this reduction of errors occurs between contrastive pairs, and so there
is no guarantee that optimizing this function is equivalent to inducing constraints
that are relevant from a phonologist’s perspective. We list the twenty constraints
with the highest weights after 200 iterations of training in Fig. 5.1. 9

5.2 Gradient Predictions

To lend additional experimental support to the constraint evaluations, which have no
objective, quantitative point of comparison, we also examine the grammar’s ability to
reproduce the gradience of human phonotactic judgements. Our gold standard data is
gleaned from an early experiment by Scholes (1966) in which the grammaticality of 66
non-words were scored on a yes/no basis by native English speakers. The percentage
of participants that responded yes is taken as a measure of gradient grammaticality,

9It’s hard to assess this section myself
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Figure 4: Plot of log-likelihood and erroneous predictions. Lower log-likelihood is
better. Naturally the model makes many errors in its initial predictions, but towards
the end of training there are large contiguous stretches where the model make the
correct prediction. While this model posits new constraints for each error, augmented
models may explore the trade-off between weight updates and constraint induction
with alternate update strategies.
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Weight Feature Description

1.34 [ ] [ˆ-strid,+cor] S T vs. TH S
1.28 [ˆ+cons,+ant] S vs ZH
1.26 [ˆ-approx,+lab] M vs. NG
1.26 [ ] [ˆ-cons,+cor] G R vs. P W
1.26 [-approx,-voice] [ˆ-ant,+cor] G R vs. CH L
1.22 [ˆ-son,-voice] [ ] S K vs. Z P
1.22 [ˆ+strid][-strid,+son] S L vs TH L
1.20 [ˆ-son,+voice][+lab] G R vs. P W
1.20 [ˆ+dorsal,+cons][ˆ+approx,-ant] G R vs. P W
1.20 [ˆ+dorsal][ˆ-strid,-ant] G R vs. CH L
1.18 [ˆ+cont,-voice] S vs. ZH
1.18 [+strid,+cor][ˆ-strid] S T vs. S S
1.18 [-son,-voice][ ] G R vs. P W
1.18 [ ][ˆ+approx,+cor] G R vs. P Y
1.16 [-son,+ant][-ant] S W vs. S R
1.16 [ ][ˆ+high,+approx] S W vs. S R
1.16 [ ][ˆ+high,+son] S W vs. S R
1.16 [ˆ-voice][ ] T R vs. V R
1.14 [ˆ+strid,-voice][ ] S L vs. TH L
1.14 [-son][ˆ+ant,+lat] S L vs. S R

Figure 5: Top 20 constraints from a run achieving an .804 Spearman correlation with
human judgements. Parameters for the run restricted constraints to a max window
of 2, max slice size of 2, 500 iterations with perceptron training, with a constraint
induction step at each iteration (if the observed form is not the winning candidate
in the neighborhood) and sampling three constraints. The sample size accounts for
a few constraints targeting the same contrastive pair.
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with the results generally accepted to be consistent with other gradient phonotactic
measures (Frisch et al. 2000?).

We compare against the scores of Hayes & Wilson 10, who also used Scholes scores
to assess their model, using Spearman nonparametric correlation. This measure
assesses the relationship between two variables only monotonic functions, i.e., it is
concerned with the rank of the variable values, not their particular value. Fig (5.2)
shows the results.

Our model exhibits a general logarithmic trend in improvement as it bootstraps,
on average, the most useful and discerning features into the model before beginning
to dredge the remainder of the space and the less probably tails of neighborhood dis-
tributions. Our model rarely, if ever, exceeds the Scholes correlation of the published
Hayes and Wilson result, but it does come quite close (-.829 vs. -.859), sometimes
reaching nearly identical scores at rare points during learning.

Though we cannot claim to have improved upon the correlation performance of
Hayes & Wilson, the intention of this work was not to improve upon global decisions
with only local information, but to provide comparable enough performance to be
treated as an alternative theory. Exactly where this performance threshold lies is
hard to determine, but we feel that the performance of this model indicates that in the
right circumstances the model can come within just a few points of the performance
of the global strategy. Further research exploring exactly what those circumstances
are, and modifications to steer the model toward them, may lend further credence
to the model through consistently higher performance.

6 Smarter, Less Aggressive Induction

In the previous section we presented a series of experiments illustrating the per-
formance of the induction procedure, and while comparison to human judgements
generally reached state-of-the-art performance at some point during training, the
performance of the final models had often degraded by a significant margin. There
are many potential factors that may have contributed to this behavior, in this section
we turn to the constraint induction criteria.

In previous experiments each example that was misclassified causing a feature
update was then subject to reconstruction of the neighborhood and reassessment by
the model. If the preferred example was still not deemed optimal by the model,
a constraint induction step was performed each time. This is one of the more ag-

10In the run distributed with the software, for which we find a ρ = −0.859.

17



●

●

●

●

●

● ● ●
● ●

●

●

●
●

● ●

● ●

●

●

●
● ●

● ●
●

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

C
or

re
la

tio
n

Single Run

●

●

●

●

●

●

●

●

●

●
● ● ● ●

● ● ●
● ● ●

● ● ● ● ● ●

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

Averaged Correlation

Figure 6: Performance of the learner in comparison to human judgements. Plot
is a measure as Spearman correlation against Scholes values, the horizontal line
represents the performance of the learner presented in H&W. Performance in single
runs (left) occasionally becomes quite competitive with state-of-the-art, despite using
only local information. In the averaged run (right), combining 10 separate runs,
the curve illustrates a consistent behavior of over-fitting and eventual performance
degradation.
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gressive possible scenarios11. Alternatively we could delay induction by an arbitrary
factor, inducing one in every three times we would have previously added constraints.
Instead we turn to what we feel might be a somewhat more principled model of in-
duction.

Classification errors fall mainly into three categories: (1) the feature weights are
inappropriate. Ultimately this is the cause of all errors in a correctly setup problem,
but errors may also occur due to (2) the absence of discerning constraints. A final
potential cause of errors in our domain, where neighborhoods are constructed prob-
abilistically, is (3) that the neighborhoods may be constructed improperly. Filtering
out observed forms goes a long way to prevent this, but forming a contrastive pair
between very dissimilar forms can certainly introduce unusual constraints into the
model, which can in turn contribute to the model over-fitting the data in unfavorable
ways.

In this section we turn out attention primarily toward errors of the third type,
as continued constraint induction explores forms that lie further toward the tails of
the distributions that are being sampled from. These forms are inherently less likely,
and yet simply stopping at a given earlier iteration only sidesteps the problem. We
want the model to come closer to converging at its best configuration.

To that end we introduce the notion of a model history, with the intention of
establishing a measure of feature weight convergence. When an error occurs and the
feature weights relevant to the example (present in the count difference vector) have
not been updated in the history, we will bias the model slightly toward updating.
If these weights have seen frequent updates, we assume that perhaps they are not
discerning properly on the basis of not having the correct constraint in the model.

Keeping second-order statistics over more fine grained events, like partitioning
histories into sets for each example, could make this approach much more effective,
but perhaps at the cost of cognitive plausibility. In this initial presentation we refrain
from seeking greater performance at the cost of backpedaling from our presentation
of this as a generally local, computationally less burdensome approach to constraint
induction. A simple, but still quite memory-consuming technique would be to simply
keep counts of how frequently errors are made on a particular observed form, or more
specifically on a particular contrastive pair, and make a constraint induction step
more likely if the model continues to err on the example using only feature updates.

11However, constraints are not sampled without replacement, so we rely on the redundancy of re-
sampling favorable constraints to mitigate the instability of constantly introducing new constraints.
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7 Incorporating Linguistic Bias

In our previous exposition we have refrained from included much a priori knowledge
of what type of constraints should be induced, leaving the model to draw constraints
solely on the basis of what it deems most useful. Being noncommittal in this regard
is mathematically realized by setting uniform priors over the constraint distribution
that induced constraints are sampled from. However, we can just as easily apply
a bias by forcing the constraint distribution to fit standard statistical distributions
that favor certain characteristics in an ideal constraint.

Applying some a priori knowledge to the learning procedure is not uncommon:
in fact our standard base of comparison throughout this paper, H&W, include a
preference for constraints of a particular type in their search heuristics. Separate
from constraint accuracy, the model presented in H&W will prefer constraints that
are smaller, and that have more general features.

As a first exploration into steering the model toward more linguistically-acceptable
solutions, we choose to also apply a bias based on constraint complexity. Our lat-
tice approach to constructing the distribution over new constraints provides a simple
method for incorporating this bias, as we can simply keep a running tally of the size
of the constraints as the distribution is constructed, yielding a constraint and its
sampling weight. We begin by centering the distribution over constraints of size 2,
where size denotes the number of binary feature values, and applying a geometric
penalty as the size of the constraint is further removed from the optimal.

7.1 Further Constraint Refinement with Histories

We can also proxy some of the accuracy and generality preferences of H&W with an
additional strategy, though it comes at the cost of keeping a memory of the observed
forms the model has been exposed to. While we do keep a memory of observed
forms to filter out of neighborhoods, the intent of that history is to rule out trivially
common forms from being considered as negative evidence. As a cognitive model
this additional history is much more in spirit to short term memory than to common
knowledge.

Less universal constraints can then be ruled out by ensuring that they are not
violated by the previously seen observed forms in this history. This strategy, though
effective, may immediately raise some concerns from phonologists aware that this
would indeed rule out many of the useful constraints posited by linguists. There
are two points of rebuttal. While we implement this as a hard constraint, there is
no doubt that this intuition would be properly phrased by a statistical model more
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sensitive to precisely what forms are being considered, and what constraints have
been posited.

Secondly, this does not necessarily rule out these constraints from ever being
considered, but only from being considered in a particular context. Reasonably
short histories (we find a history of size 5 is often adequate on this small data set)
both refine constraint induction decisions while simultaneously allowing for more
variation in contexts, and more opportunities for truly useful constraints that would
otherwise be excluded to find themselves in the constraint set.

We conclude with a return to our experiments matching human gradient phono-
tactic judgements (Fig. 7.1).

Together these augmentations to the model provide a near universal improvement.
There are gains in both the maximum correlation, the correlation of the final model
on both single and averaged runs, and the constraints induced show signs of migration
toward more linguistically acceptable analyses. We present these results separately
because they do raise concerns, especially given the training and testing data are one
in the same, of probing the data and tailoring the model to this particular problem
set. However, we feel that each augmentation has been grounded in a reasonably
plausible motivation. We defer to future work for more principled implementations
of these methods, and a more piece-wise analysis of each component’s contribution
to the final performance gains.

8 Conclusions & Future Work

In this paper we present a novel, error-driven technique for constraint induction for
log-linear models of phonological grammar. This error driven approach reduces the
decision spaces relative to global or batch induction procedures, and the marriage
of an error-driven induction procedure with error-driven weight updates provides a
unified framework for how phonological grammars can be bootstrapped from little
prior information. We show that this approach succeeds in reducing classification
errors, and provides gradient phonotactic judgements that are competitive with state-
of-the-art global models at replicating human performance.

One unsolved problem is the nuisance of the many free parameters governing the
constraint induction process, while having little data to provide a principled way of
tuning them. Partitioning the observed set into a group of held-out clusters, with
Scholes scores, to test against is most analogous to how this might be done in the
NLP/ML community, but it may not be reflective of the environment of the human
learning where a small set of observed forms are seen many, many times. It is very
unlikely that any observable cluster goes unheard by an infant throughout the prime
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Figure 7: Revised gradient phonotactic judgement results. Having included the more
relaxed constraint induction protocol, priors over the constraint sampling distribu-
tion, and a history-based filtering heuristic, the performance curve illustrates slower
learning, but improved performance. Training of the original model ends at iteration
250, but we allow the revised model to continue given the less frequent constraint
induction.

22



years of language acquisition, and the relatively small set of clusters in onsets means
that each example that is purposely withheld carries with it greater value than in the
NLP tasks where this strategy is most employed, and where counts of some events
are expected to be sparse.

Rephrasing this as a Bayesian model conditioned on the current features and
weights, observed and contrastive pair, and history of seen examples may allow for
a more concise model representation – with less of a heuristic focus – and allow
for easier integration of rich priors over these aspects of the model. Rather than
passing on the question of external tinkering from “where does the constraint set
come from”, to “how do these parameters governing constraint induction get set?”,
and on yet again to “how do these hyperparameters get set?”, the hyperparameters
may be explainable through more principled means from the data.

These initial explorations are promising and a solid proof of concept for online,
purely-local constraint induction. We belief that addressing these additional con-
cerns, incorporating prior beliefs, and additional history-based filtering will produce
a more powerful model that induces more linguistically ideal constraints. Though
because these augmentations may raise criticism as being less cognitively plausi-
ble, we present this model as a barebones approach to contrastive, online constraint
induction.
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