Improving Morphology Induction with Spelling Rules

Jason Naradowsky University of Massachusetts Amherst <u>narad@cs.umass.edu</u>

Joint Work with Sharon Goldwater

Outline

- Morphology Induction
- Our Model
- Hyperparameters & Inference
- Experimental Results
- Conclusion

The study of the internal structure of words:

Antidisestablishmentarianism

The study of the internal structure of words:

Anti.dis.establish.ment.arian.ism

The study of the internal structure of words:

Morphemes

Anti.dis.establish.ment.arian.ism

The study of the internal structure of words:

The study of the internal structure of words:

Unsupervised Morphology Induction

- Observing just the words, find the best segmentation:
 - \Box walking \rightarrow walk.ing
- Applications:
 - Important component in many NLP tasks
 - Especially useful for morphologically-rich languages (Finnish, Arabic, Hebrew)
 - Cognitive Science: How do children learn this?

Underlying Assumption:

User's Goal: Find best (linguistic) solution.

System Goal: Find most concise solution.

Too Many Stems	Too Many Suffixes	Just Right
walk.	wa.lk	walk.
walks.	wa.lks	walk.s
walking.	wa.lking.	walk.ing
talk.	ta.lk	talk.
talking.	ta.lking	talk.ing
cat.	cat.	cat.
cat.s	cat.s	cat.s
Morphs: 6+2=8	3+5=8	3+3=6

Underlying Assumption:

User's Goal: Find best (linguistic) solution.

System Goal: Find most concise solution.

Too Many Stems	Too Many Suffixes	Just Right
walk.	wa.lk	walk.
walks.	wa.lks	walk.s
walking.	wa.lking.	walk.ing
talk.	ta.lk	talk.
talking.	ta.lking	talk.ing
cat.	cat.	cat.
cat.s	cat.s	cat.s
Morphs: 6+2=8	3+5=8	3+3=6

Underlying Assumption:

User's Goal: Find best (linguistic) solution.

System Goal: Find most concise solution.

Morphs: 6+2=8	3+5=8	3+3=6
cat.s	cat.s	cat.s
cat.	cat.	cat.
talking.	ta.lking	talk.ing
talk.	ta.lk	talk.
walking.	wa.lking.	walk.ing
walks.	wa.lks	walk.s
walk.	wa.lk	walk.
Too Many Stems	Too Many Suffixes	Just Right

Bayesian Morphology Induction (Goldwater 2006)

P(word) = P(class, stem, suffix) = P(class) x P(stem | class) x P(suffix | class)

Each word consists of a stem and a suffix

 (suffix can be the empty string)

 Multinomials with symmetric Dirichlet priors

 No bias means most concise solution preferable

Generative Process: 'walking'

Generative Process??: 'napping'

Spelling Rules

- Rules capture a one-character transformation in a particular context.
- 3 Types: Insertions, Deletions, and Null (no transformation)
- Left context more important in English (we find 2 character left contexts most useful)

Outline

- Morphology Induction
- Our Model
- Hyperparameters & Inference
- Experimental Results
- Conclusion

A New Generative Process:

A New Generative Process:

A New Generative Process:

Our Model

P(class, stem, suffix, rule type, rule) =

- P(class) x
- P(stem | class) x
- P(suffix | class) x
- P(rule type | context(stem, suffix)) x
- P(rule | rule type, context(stem, suffix))

rule type \in { Insertion, Deletion, Null }

Greatly increases search space:
About 28 times more possible solutions per word!

Outline

- Morphology Induction
- Our Model
- Hyperparameters & Inference
- Experimental Results
- Conclusion

Inference

- Alternate between:
 - Gibbs Sampling for the latent variables
 - (class, stems, suffix, etc)
 - Hyperparameter Updates
 - (update hyperparameters over priors on variables)
 - minimize free parameters!
- We run for 5 epochs of:
 - 10 Gibbs Sampling Iterations
 - 10 hyperparameter iterations
- Convergence much earlier

Hyperparameters

- Induced for class, stem, suffix, and rule variables
- Learn hyperparameters using Minka's fixed-point method (Minka, 2003)
- Inducing all is principled, but also a computational burden
- Rule type prior set by linguistic intuition:
 hyp(INSERTION) = .001
 hyp(DELETION) = .001
 hyp(NULL) = .5

Outline

- Morphology Induction
- Our Model
- Hyperparameters & Inference
- Experimental Results
- Conclusion

Data Sets & Evaluation

7487 different verbs from Wall Street Journal
 Gold Standard: CELEX lexical database

 surface segmentation: walk.ing
 abstract representation: 50655+pe

Evaluation Metrics:

Underlying form accuracy

Underlying Form Accuracy

- Construct the underlying stem from derivational data contained in the CELEX (using lemma ID number)
- Lookup suffix in dictionary:
 - □e3S : -s
 - □a1S : -ed
 - □pe : -ing
- Match strings UFA is % correct

Word	Fo	ound	Gold
state	state+ɛ	٤ → ٤	44380+i
stating	state+ing	e → ε	44380+pe
states	stat.es	٤ → ٤	44380+a1S
station	stat+ion	ε → ε	44405+i

Word	Fo	und	Gold
state	state+ɛ	ε → ε	44380+i
stating	state+ing	e → ε	44380+pe
states	stat.es	$E \rightarrow E$	44380+a1S
station	stat+ion	8 → 8	44405+i

Word	Found		Gold
state	state+	ε → ε	44380+i
stating	state+ing	$e \rightarrow \epsilon$	44380+pe
states	stat.es	8 → 8	44380+a1S
station	stat+ion	ε → ε	44405+i

Word	Found		Gold
state	state+	$\varepsilon \rightarrow \varepsilon$	44380+i
stating	state+ing	$e \rightarrow \epsilon$	44380+pe
states	stat.es	٤ → ٤	44380+a1S
station	stat+ion	ε → ε	44405+i

1 match out of 1 arcs = 100% PP for this stem

Word	Fo	und	Gold
state	state+ɛ	ε → ε	44380+i
stating	state+ing	e → ε	44380+pe
states	stat.es	$E \rightarrow E$	44380+a1S
station	stat+ion	8 → 8	44405+i

Word	Fc	ound	Gold
state	state+ɛ	$\epsilon \rightarrow \epsilon$	44380+i
stating	state+ing	e → ε	44380 +pe
states	stat.es	£ → £	44380+a1S
station	stat+ion	ε → ε	44405+i

Word	Found		Gold
state	state+ɛ	$\epsilon \rightarrow \epsilon$	44380+i
stating	state+ing	$e \rightarrow \epsilon$	44380+pe
states	stat.es	$E \rightarrow E$	44380+a1S
station	stat+ion	ε → ε	44405+i

1 correct arc out of 2 arcs = %50 Recall for this stem

Results: Stems

Results: Suffixes

Induced Rules:

Freq	Rule	Example
468	$e \rightarrow \epsilon$ when before i	abate, abating
41	$\epsilon \rightarrow e$ when after sh/ss/ch	match, matches
29	$\epsilon \rightarrow p$ after p, before i or e	nap, napping

Of the top 20 types of induced rules, 568 of 623 correct = 91 %

Incorrect rules: fated explained as fates.d with s-deletion rates explained as rat.s with an e-insertion

Conclusions

- Orthographic rules can help in morphology induction
- Greatly increases search space
- Joint inference over complimentary tasks can overcome the search burden and significantly improve performance in particular parts of task
- This may allow unsupervised generative models to compete more closely with unsupervised discriminative models (with contrastive estimation)

Future Work

Extend to multiple suffixes

□ Test on more representative language samples

Test on more languages

- Leverage phonological information for asymmetric priors
 - Once we know 'p' is often doubled, and 't' is similar to 'p', should imply 't' may also often be doubled
 - □May allow for character-to-character transformations
- Hierarchical Models
 - More like grammar induction than segmentation
 Capture interaction between prefixes and suffixes