Unsupervised Bilingual Morpheme Segmentation and Alignment

Unsupervised Bilingual
Morpheme Segmentation and
Alignment

...with Context-rich Hidden Semi-Markov
Models

Jason Naradowsky, UMass Amherst
Kristina Toutanova, Microsoft Research

Jason Naradowsky - University of Massachusetts Amherst

Thursday, June 23, 2011




Unsupervised Bilingual Morpheme Segmentation and Alignment

Context |: Machine Translation

3 3 7
DET AD)] NN

... the red flower s ...

. HCPBCH-U-TC LIBCT-A ...
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Unsupervised Bilingual Morpheme Segmentation and Alignment

Context 2: Segmentation

c

... HICPBCH-U-TC LBCT-4 ...
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Unsupervised Bilingual Morpheme Segmentation and Alignment

Overview

® Motivation: why morphemes?
® Our Model
® Preprocessing for Alighment
® Model Components
® | earning & Inference
® Experiments
® Alignment

® Segmentation
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Cons of Word Alignment (1/6)

Word Alignment

... the red flowers ...

... YSPBECHUTE LUBETH ...
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Cons of Word Alighment (2/6)

Word Alignment

... the red flowers ...

... YEPBEHUTE LBETH ...
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Cons of Word Alignment (2/6)

Word Alignment

... the red flovyers

... YePBEHUTE L[BETH ...
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Cons of Word Alignment (4/6)

Word Alignment

... the red flovyers

... YUEPBEHUTE LBETH ...
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Cons of Word Alighnment (5/6)

Word Alignment

... (the red) flowers ...

... YEPBEHUTE LBETH ...
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Cons of Word Alighment (6/6)

Word Alignment

.. (the red) flower-s ...

... YSPBEH-U-TE LBET-A ...
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Morphological Productivity and MT (1/7)

Morphological Productivity

the red flowers: 4EPBEH-U-TE

(plural)
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Morphological Productivity and MT (2/7)

Morphological Productivity

the red flower: 4EPBEH-0-TO

(neuter)
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Morphological Productivity and MT (3/7)

Morphological Productivity

the red book:  uepsen-a-rTa

(feminine)

Jason Naradowsky - University of Massachusetts Amherst




Morphological Productivity and MT (4/7)

Morphological Productivity

the red chair: YEPBEHUST

(masculine)
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Morphological Productivity and MT (5/7)

Morphological Productivity

masc. fem. nheuter plural
yepBeHuT | red depseHara |l red uyepBeHoTo | red uepsenute | red
...the red chair ... ... the red book ... ...the red flower ... ... the red flowers ...
... YePBEHU CTOI ... ... UepBEHata KHUTA ... ... YEPBEHUTE LBETE ... .. YePBEHUTE LBETH ...
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Morphological Productivity and MT (6/7)

Morphological Productivity

masc. fem. nheuter plural
yepBeHuT | red depseHara |l red uyepBeHoTo | red uepsenute | red
...the red chair ... ... the red book ... ...the red flower ... ... the red flowers ...
def.
... UepBEHU CTOII ... ... UepBeHaTa KHUTA ... ... UepBEHHUOTO 1BeTe ...| |.. uepBeHuUTE UBETS ...
...red chair ... ...red book... ...red tree .. ..red flowers ...
indef.
... YUepBEH CTOII ... ... UepBeHa KHUTA ... ... YEPBEHO 1IBETE ... ... YepPBEHU LIBETE ...

yepseH | red yepseHa |l red  yepseHo | red yepsenu | red
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Morphological Productivity and MT (7/7)

Morphological Productivity

Yields Sparsity!

Counts

yepseH | red

ye

bBeHarta | red

ye

DBEHOTO | red

ye

bBeHuTe | red

| vs u4epBeH |l red X 8

ye

DBEHUAT | red

yepBeHa | red

yepBeHo | red

yepBeHu | red
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Previous Work (1/1)

Previous VWork

> Snyder & Barzilay (2008)

» A generative model for finding morphological
paradigms across languages.

» Xu et al. (2008)

» A Bayesian model for segmenting
Chinese for use in MT.

»  Chung & Gildea (2009)

» Target tokenization and alignment for MT
using IBM Model | assumptions.
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Overview (1/2)

Task: Resource-Rich = Resource-Poor Translation

Goal: Find best target segmentation and alignment to
source morphemes.

® QOur Contributions

® Hidden semi-markov model to find
target morpheme segmentation

® | everage source-side information

® Broad contextual dependencies with
hierarchical smoothing

® | atent morphological type induction
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Overview (2/2)

Overview

® Motivation: why morphemes?
® Our Model
® Preprocessing for Alighment
® Model Components
® | earning & Inference
® Experiments
® Alignment

® Segmentation
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Preprocessing (1/6)

Marking up the source side:

the

red flowers ...
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Preprocessing (2/6)

Marking up the source side:

|. Tag
2. Parse

e
the red flowers ...

HEAD: 4 4 /
POS: DET AD] NN
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Preprocessing (3/6)

Marking up the source side:

|. Tag
2. Parse
3. Segment

e
the red flower s...

HEAD: 4 4 / /
POS: DET AD] NN  NN-SUFFIX
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Model (1/3)

Overview

® Motivation: why morphemes?
® Our Model
® Preprocessing for Alighment
® Model Components
® | earning & Inference
® Experiments
® Alignment

® Segmentation
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Walkthrough (1/5)

the

tag

2 3
red flower

2, root

... YEPBCH-U-TE ...

A
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Walkthrough (2/5)

I 2 3
the red flower
tag

12, root

\ 4

()
YEePBEH

... YEPBCH-U-TE ...

A
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Walkthrough (3/5)

| 2 3
the red flower
tag
12, root
\ 4
Lo

_{4YEepBEH

off

... YEPBCH-U-TE ...

A
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Walkthrough (4/5)

the

red

tag
12, root

\ 4

Lo

_{4YEepBEH

tCLl

14, suffix

... YEPBCH-U-TE ...

off

3
flower

A
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Walkthrough (5/5)

| 2
the red
taO tCLl
_42, root 44, suffix
\ 4
20
_{4epBeH A4 u
\ 4
b() bl

off

3
flower

off

... YEPBCH-U-TE ...

A

tCLQ

|, suffix
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Model (2/3)

Model Components

Distortion Model
Morpheme Translation Model
Word Boundary Generation Model

Length Penalty
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Model (3/3)

Model Decomposition:

CdIStOI‘tIOn model)
P(pu,ta, ble) = H PD taz\tazn 1, b;i 1,6)

(morpheme translation modeD
V

'PT(Mi\t@fz:, bz’—l; bi—27 Hi—1, e)

(word boundary model)
Pp(bi|pis pri—1,ta;, bi—1,b;_2,€)
Zlength penalty)

P(|ps))
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Distortion Model (1/5)

Distortion Model

Traditional Form:
PD — P(ai|ai_1,e)

Motivation:
el e2 e3 e4 e5

\

l

fl f2 f3 f4 15
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Distortion Model (2/5)

Distortion Model

Traditional Form:
PD — P(ai|ai_1,e)

Motivation:
el e2 e3 e4 e5

\

l

fl f2 f3 f4 15
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Distortion Model (3/5)

Distortion Model

Traditional form:
PD — P(ai|ai_1,e)

Replaced with log-linear model:

Pp

€¢(am@@! 1,€)

= Z’L €¢(ai7ai! 176)

(Berg-Kirkpatrick 2010)
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Distortion Model (4/5)

Distortion Model

Actual form:
Pp(ta;|tas 1,04 1,€)

® Richer context

® { variables capture morphological
type, {prefix, root, suffix}
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Distortion Model (5/5)

Distortion Features

Feature Value
Morph Distance

Word Distance

Binned Morph Distance fore
Binned Word Distance fore
Vorph State Transrtion suffix-root
Same Target Word FALSE
°OS Tag Transition DET-NN
Dep Relation DET NN
Null Alignment FALSE

...and conjunctions
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Morpheme Translation Model (1/1)

® Morpheme Translation Model
Pr(pilta;,bi—1,b;—2, pt;—1,€)

® Also depend on aligned source
morpheme and POS

® Hierarchical Back-off:

c(ttiy €q,, i) + o Po(puilt;)
Pr(pilea,,ti) = c(eq,,t;) + ao

c(pi, ti) + o Pr(pes)

Polpuilti) = c(t;) + o
Py (i) = C(WZ(.) 0:)52 =
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Word Boundary Model (1/1)

Word Boundary Generation

-Pp(bi| i, pri—1,tai, bi—1,b;_2,e€)
® Useful as contextual information
® (Poon 09, Creutz & Lagus 07)
® Explicitly expressed in the model

® Estimate what morphemes are likely to
have which position in a word, number of
morphemes in a word

® Observed on target side - no increase to
inference complexity
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Length Penalty (1/1)

Length Penalty:

(Chung & Gildea 09),
(Liang & Klein 09)

ex : l, =2

1

LP il) —
(|M |) e‘lu'illp
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Overview (1/1)

Overview

® Motivation: why morphemes?
® Our Model
® Preprocessing for Alighment
® Model Components
® | earning & Inference
® Experiments
® Alignment

® Segmentation
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Inference, Learning & Pruning (1/2)

Inference

® Exact, polynomial (standard semi-markov
with richer state-space)

e EM E-Step:

® (Counts taken for valid hidden variable
configurations

e EM M-Step
® | BFGS for Distortion model

® |nterpolation counts for translation and
word boundary model (a way of backing-
off to less conditioning)
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Inference, Learning & Pruning (2/2)

Pruned Decoding

® Create a dictionary from the target corpus
® |nsert each word into a trie
® Derive list of top K most frequent affixes

® Restrict model to:
Schone & Jurafsky (2000)

[pre}lx*J [ suffix*™ J
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Overview (1/1)

Overview

® Motivation: why morphemes?
® Our Model
® Preprocessing for Alighment
® Model Components
® | earning & Inference
® Experiments
® Alignment

® Segmentation
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Data (1/1)

Data

® Parallel phrases corpus (Snyder & Barzilay 2008)

® 6,139 short phrases drawn from English,
Hebrew, and Arabic Bible text.

® Manually annotated Arabic with morpheme
alignments

® Arabic Treebank
® |40,265 words

® Both have gold morphological analyses

® Held-out data for smoothing, dictionary size,
conditioning context, length penalties
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Alignment Results (1/2)

Alignment Experiments

® Procedure
® TJypical joint training

® Project morpheme alighments to word
alignment

® Evaluated on Alignment Error Rate (AER)
® Results are for Arabic short phrases only!
® Baseline |: Chung & Gildea (2009)

® Baseline 2: WDHMM model of He (2007)
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Alignment Results (2/2)

Alignment Results

Arabic AER (lower is better)

4139
12,1 . W csG
| o3 @ WDHMM GDF
10.5 | [ | WDHMM E-A
B N&T Joint

7
35
0
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Segmentation Results (1/4)

Segmentation Experiments

® Joint Model on Hebrew & Arabic parallel
phrases corpus

® Monolingual model on all 3 data sets
® Measured by Fl
® Baselines:

® Chung & Gildea (2009)

® Morfessor

® Snyder & Barzilay (2008)

® Poon et.al (2009)
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Segmentation Results (2/4)

Segmentation Results

S&B Arabic Fl S&B Hebrew F

88

B Morfessor

S&B

B Poon et.al

8l 80.0 B N&T joint
78.1
74
67.0

67
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Segmentation Results (3/4)

Segmentation Results

S&B Arabic Fl S&B Hebrew F
88
B Morfessor
84.6 S&B
B Poon et.al
8l 80.0 B N&T Joint
78.1 N&T Mono
74 73.1
67 66.9 67.0
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Segmentation Results (4/4)

Segmentation Results

Arabic Treebank FI

88 87.4
B Morfessor
Poon et. al
81 | N&T Mono
77.7
74.9
74
67
60
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Breakdown & Conclusions (1/3)

Sub-Model Results

Arabic Hebrew ATB
Mo 0.8 1.1 +0.4
Dictionary
No Boundary
Modeling -8.6 -0.4 -3.3
No Latent 7.4 13.6 195
Morphology ' ' '

(Incremental, not cumulative loss)
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Breakdown & Conclusions (2/3)

Conclusions
® Contributions

® HMM-based structure + word/morpheme
aware feature-rich distortion model
improves joint alighment and segmentation

® Significant gains in morphological
segmentation accuracy due to:

® Richer Context
® |[atent morphological structure

® Explicit modeling of word boundaries
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Breakdown & Conclusions (3/3)

Future Work

® |ntegrate with decoding for MT

® Higher-order dependencies &
morphological phenomena

® Data & human evaluations
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Unsupervised Bilingual Morpheme Segmentation and Alignment

Thank  You!

bnarogaps 7
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