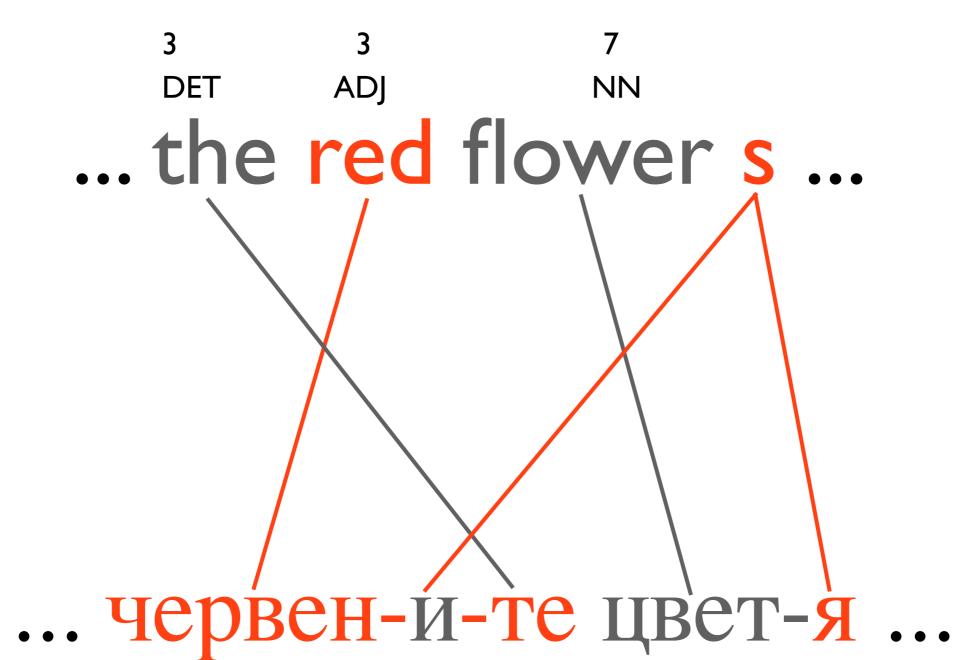
Unsupervised Bilingual Morpheme Segmentation and Alignment ...with Context-rich Hidden Semi-Markov Models

Jason Naradowsky, UMass Amherst Kristina Toutanova, Microsoft Research

Jason Naradowsky - University of Massachusetts Amherst

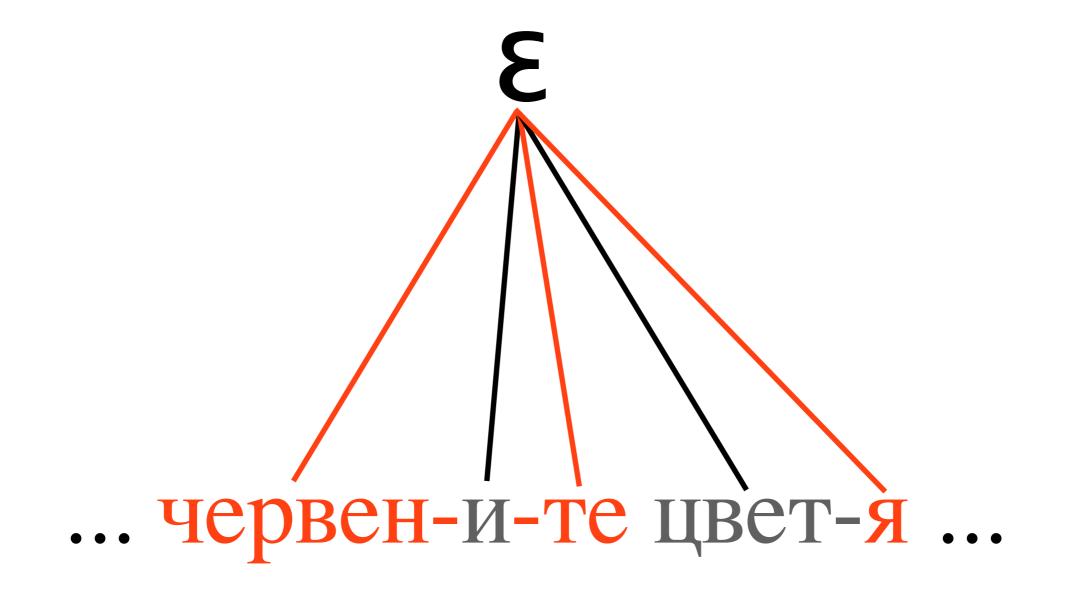
Unsupervised Bilingual Morpheme Segmentation and Alignment

Context I: Machine Translation



Jason Naradowsky - University of Massachusetts Amherst

Context 2: Segmentation



Jason Naradowsky - University of Massachusetts Amherst

Unsupervised Bilingual Morpheme Segmentation and Alignment

Overview

- Motivation: why morphemes?
- Our Model
 - Preprocessing for Alignment
 - Model Components
 - Learning & Inference
- Experiments
 - Alignment
 - Segmentation

Word Alignment

... the red flowers ...

... червените цветя ...

Jason Naradowsky - University of Massachusetts Amherst

Cons of Word Alignment (2/6)

Word Alignment

... the red flowers ...

... червените цветя ...

Jason Naradowsky - University of Massachusetts Amherst

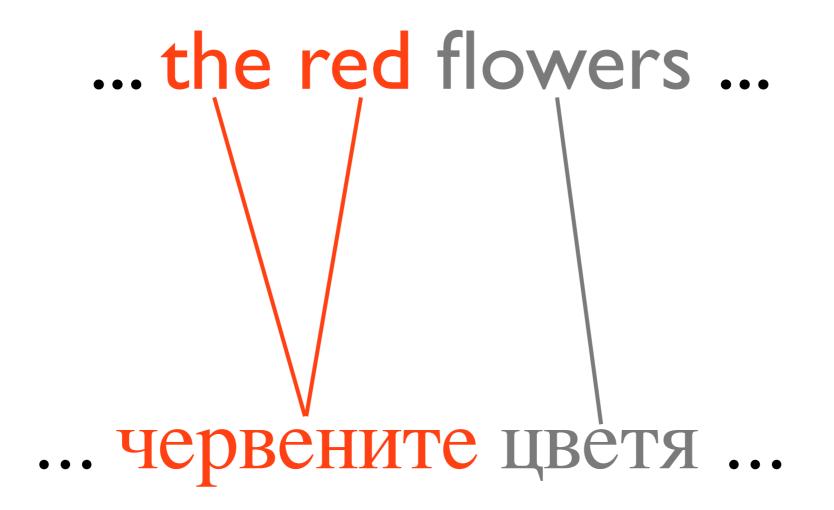
Cons of Word Alignment (2/6)

Word Alignment

Jason Naradowsky - University of Massachusetts Amherst

Cons of Word Alignment (4/6)

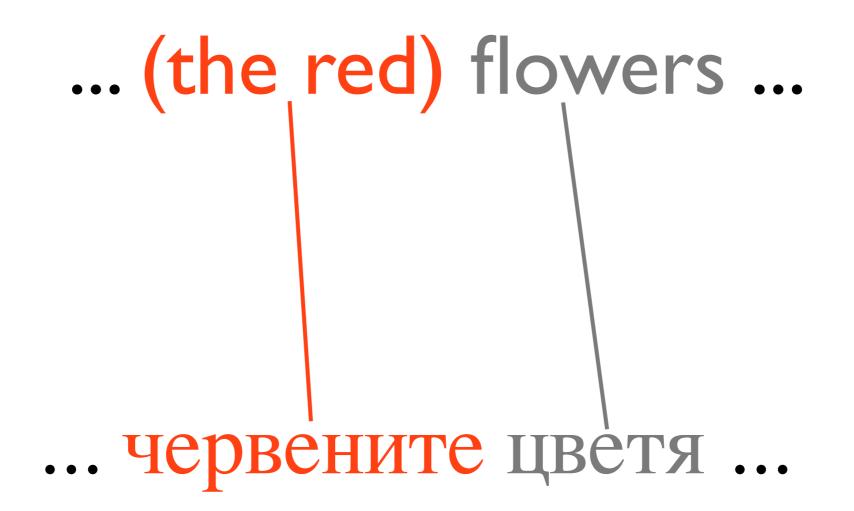
Word Alignment



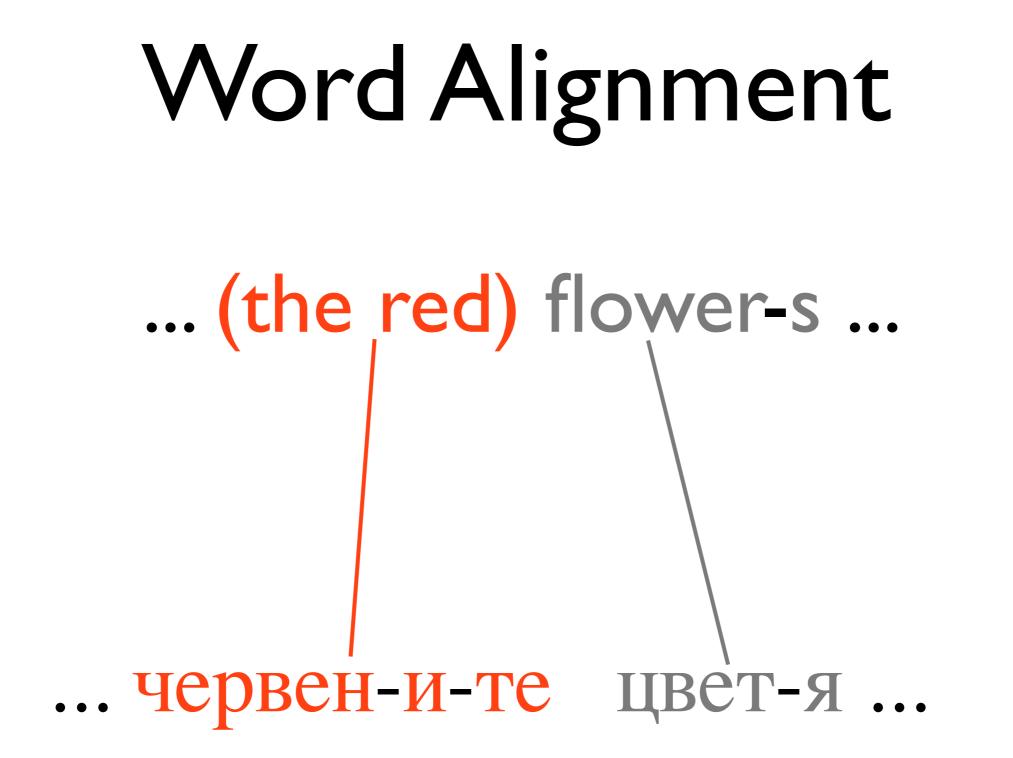
Jason Naradowsky - University of Massachusetts Amherst

Cons of Word Alignment (5/6)

Word Alignment



Jason Naradowsky - University of Massachusetts Amherst



Jason Naradowsky - University of Massachusetts Amherst

the red flowers: <u>червен-и-те</u> (plural)

Jason Naradowsky - University of Massachusetts Amherst

the red flower:

червен-о-то

(neuter)

Jason Naradowsky - University of Massachusetts Amherst

the red book:

червен-а-та

(feminine)

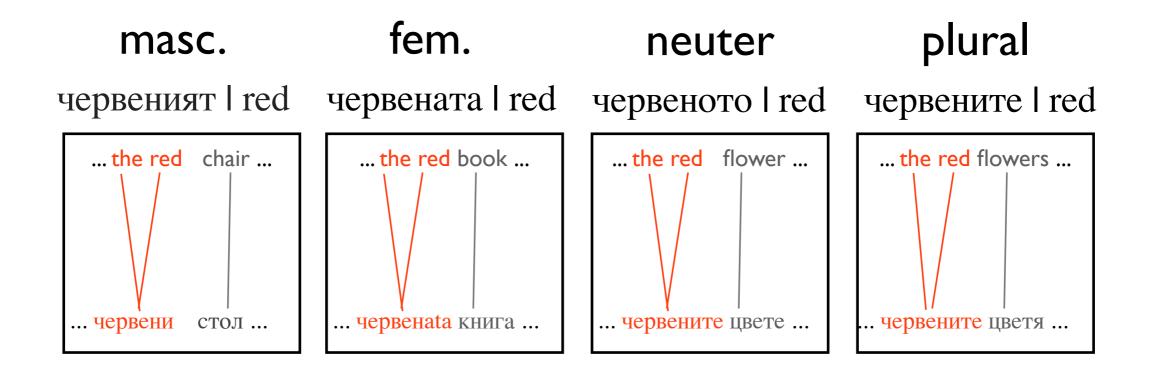
Jason Naradowsky - University of Massachusetts Amherst

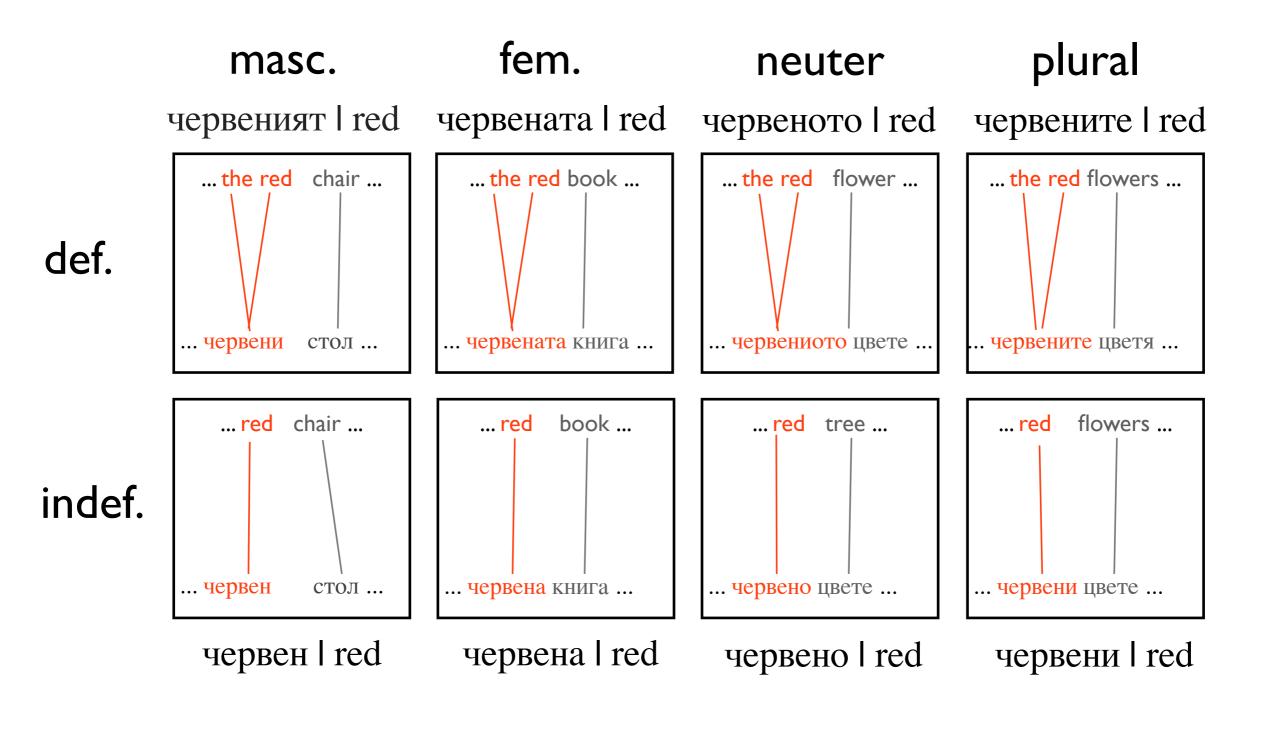
the red chair:

червеният

(masculine)

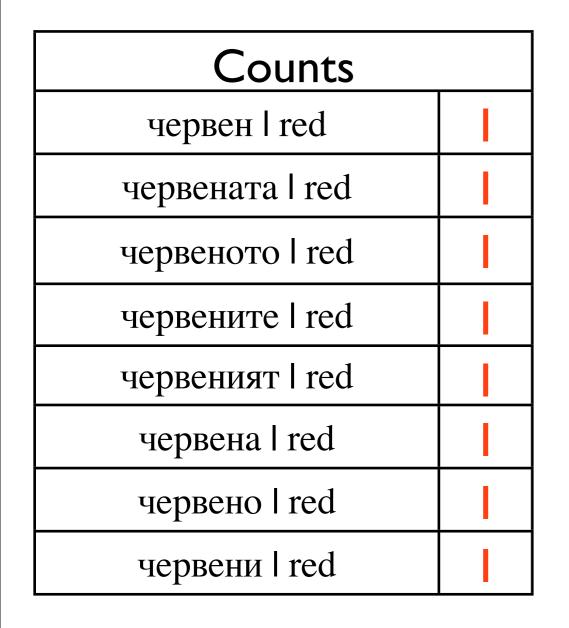
Jason Naradowsky - University of Massachusetts Amherst





Jason Naradowsky - University of Massachusetts Amherst

Morphological Productivity Yields Sparsity!



vs червен I red × 8

Jason Naradowsky - University of Massachusetts Amherst

Previous Work

- Snyder & Barzilay (2008)
 - A generative model for finding morphological paradigms across languages.
- Xu et al. (2008)
 - A Bayesian model for segmenting Chinese for use in MT.
- Chung & Gildea (2009)
 - Target tokenization and alignment for MT using IBM Model 1 assumptions.

- Task: Resource-Rich \rightarrow Resource-Poor Translation
- Goal: Find best target segmentation and alignment to source morphemes.
 - Our Contributions
 - Hidden semi-markov model to find target morpheme segmentation
 - Leverage source-side information
 - Broad contextual dependencies with hierarchical smoothing
 - Latent morphological type induction

Overview

• Motivation: why morphemes?

• Our Model

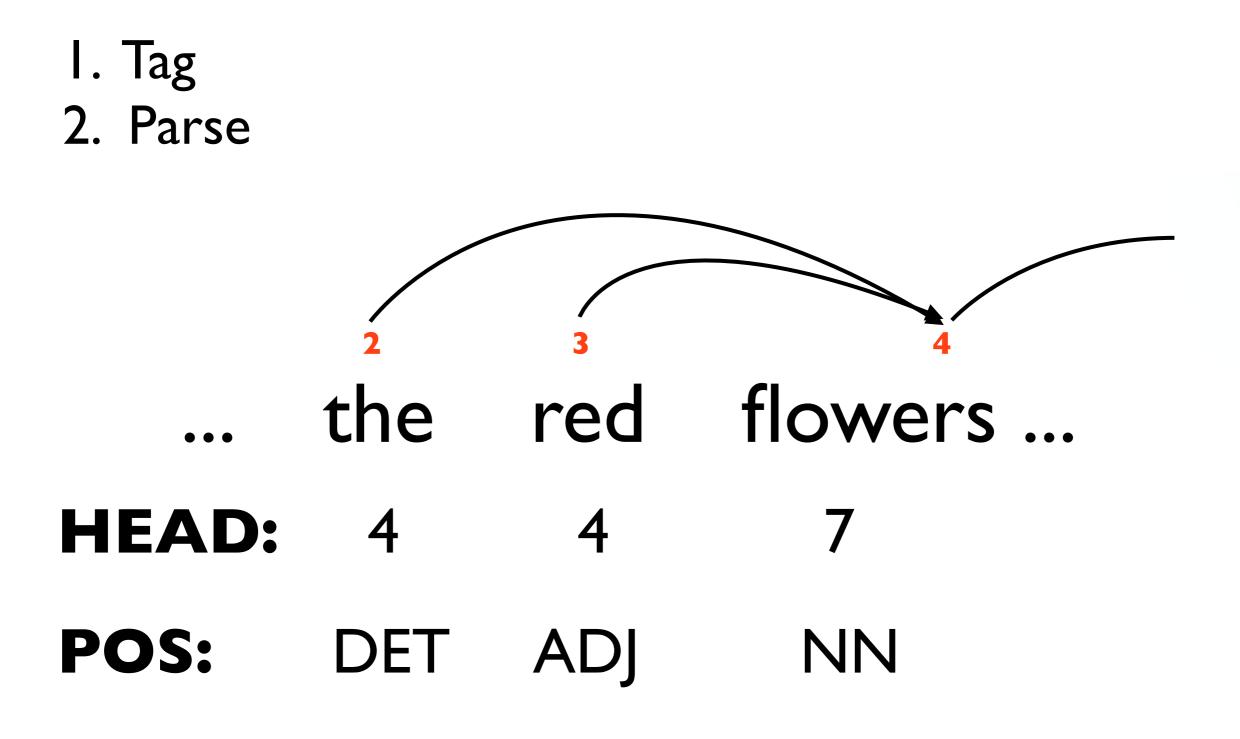
- Preprocessing for Alignment
- Model Components
- Learning & Inference
- Experiments
 - Alignment
 - Segmentation

Marking up the source side:

... the red flowers ...

Jason Naradowsky - University of Massachusetts Amherst

Marking up the source side:



Marking up the source side:

I. Tag 2. Parse 3. Segment the flower red **S** **HEAD:** 4 4 **NN-SUFFIX POS:** NN DET

Overview

• Motivation: why morphemes?

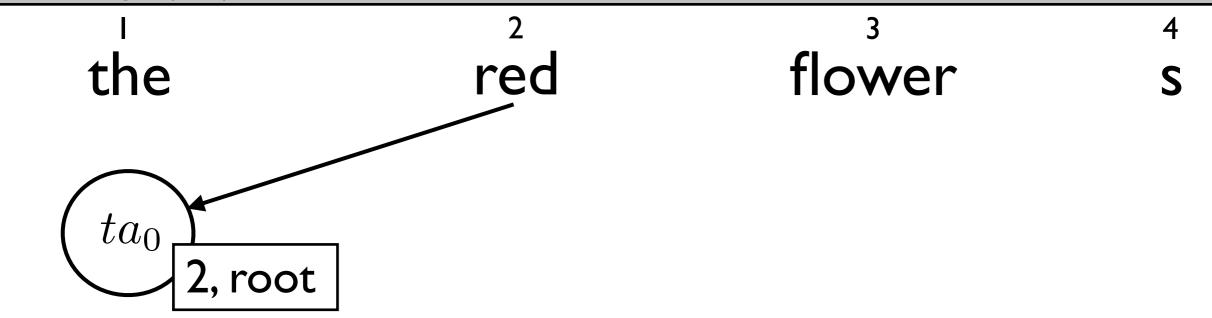
• Our Model

• Preprocessing for Alignment

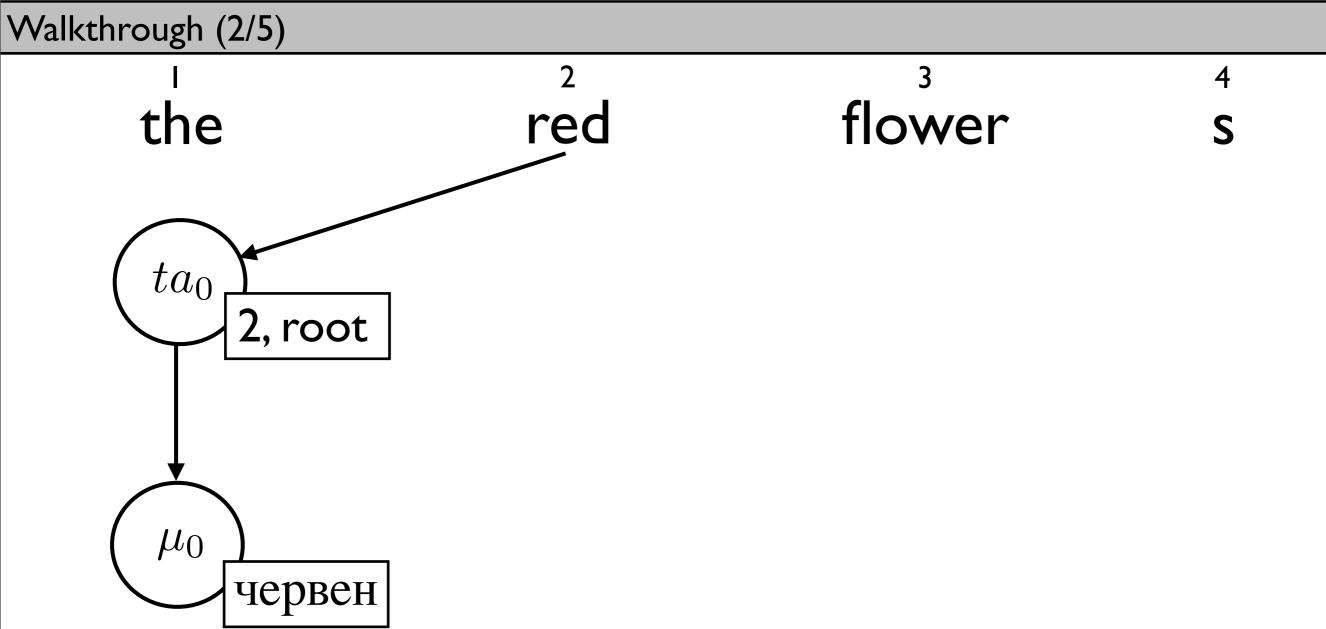
Model Components

- Learning & Inference
- Experiments
 - Alignment
 - Segmentation

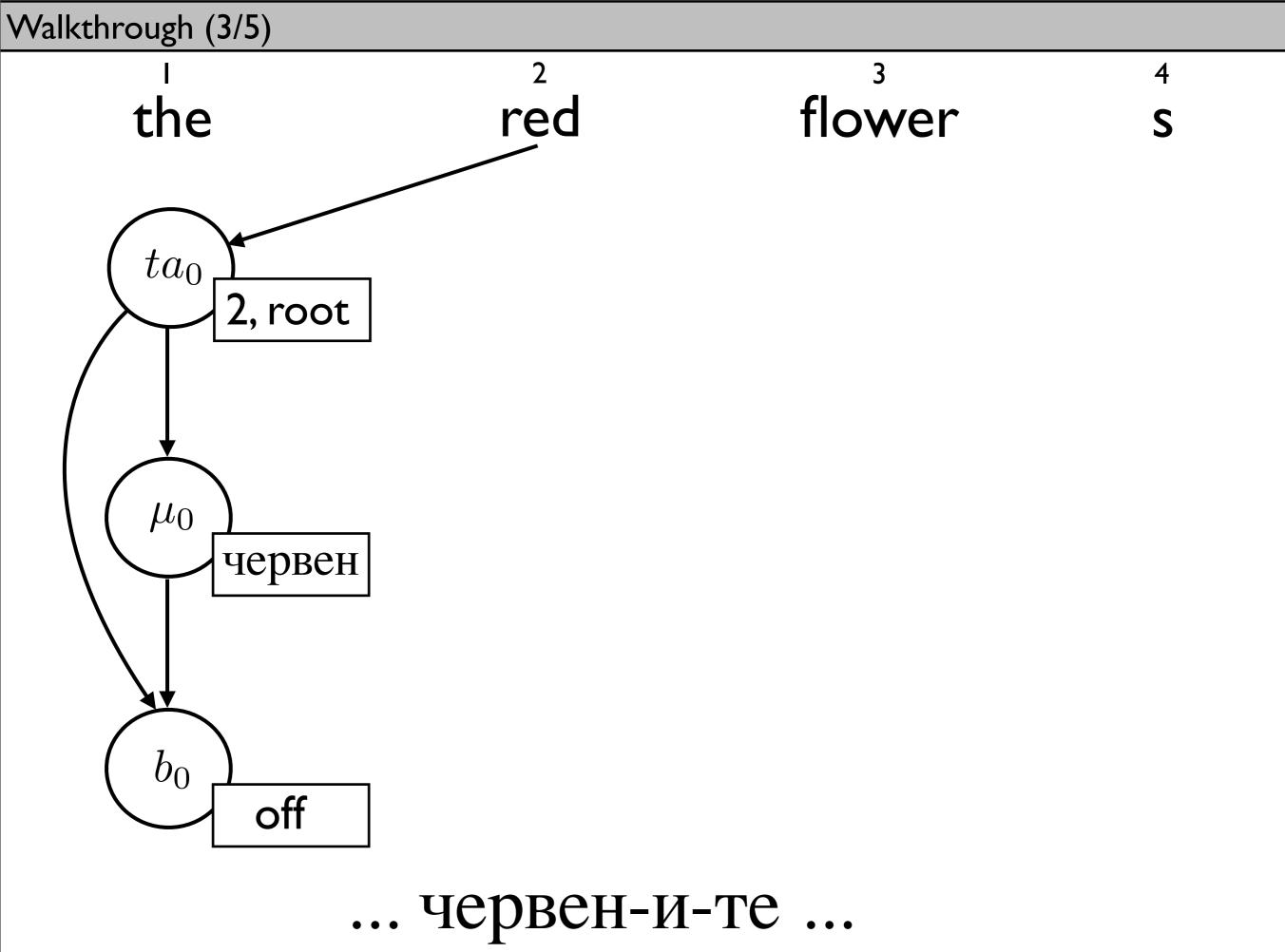
Walkthrough (1/5)



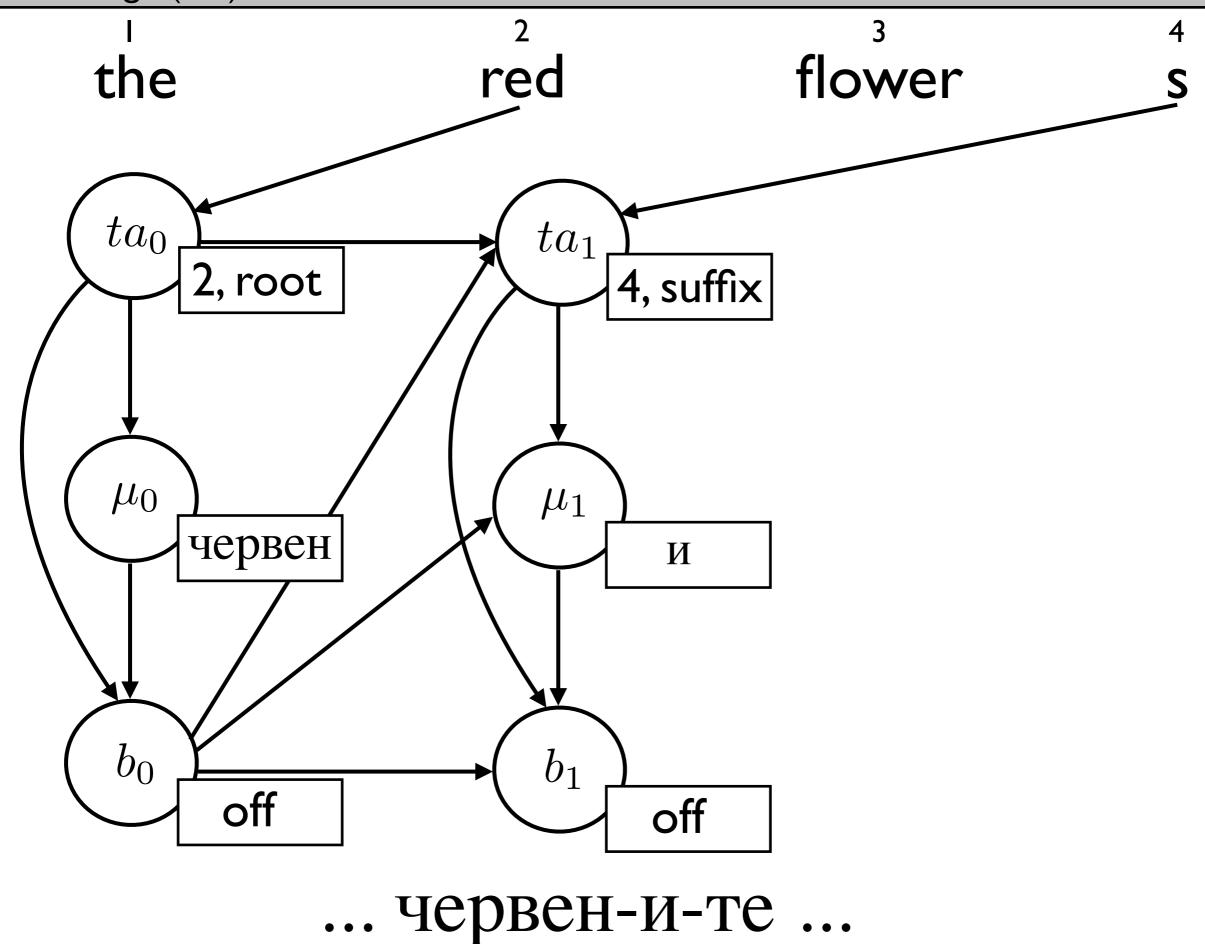
... червен-и-те ...

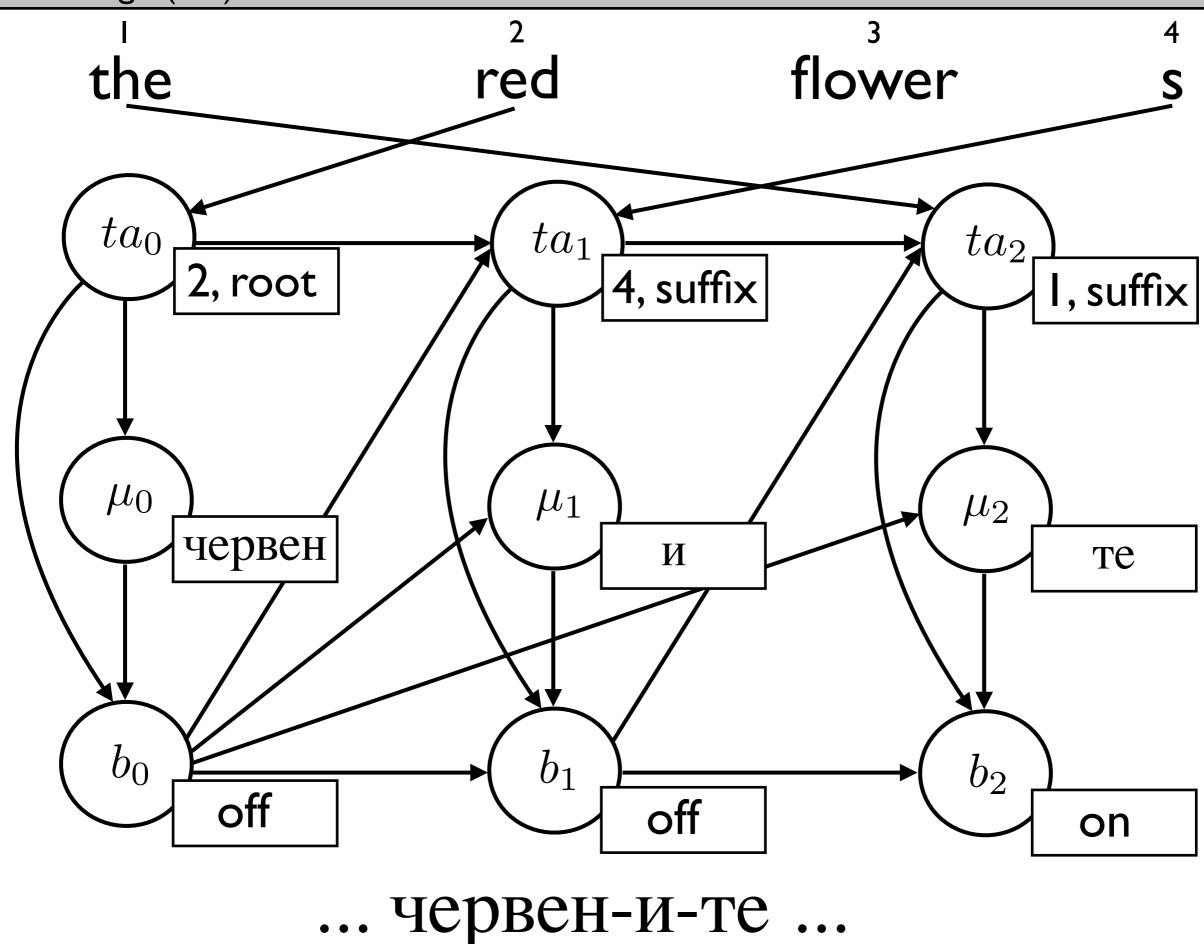


... червен-и-те ...



Walkthrough (4/5)





Model Components

- Distortion Model
- Morpheme Translation Model
- Word Boundary Generation Model
- Length Penalty

Model (3/3)

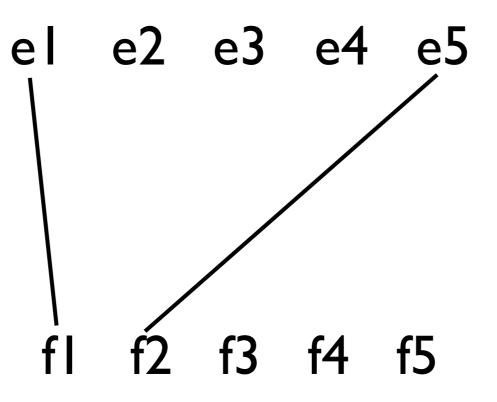
Model Decomposition:

$$\begin{split} P(\mu, \mathbf{ta}, \mathbf{b} | \mathbf{e}) &= \prod_{i=1}^{I} P_D(ta_i | ta_{i-1}, b_{i-1}, \mathbf{e}) \\ & \underbrace{\text{(morpheme translation model)}}_{\mathbf{translation model}} \cdot P_T(\mu_i | ta_i, b_{i-1}, b_{i-2}, \mu_{i-1}, \mathbf{e}) \\ & \underbrace{\text{(word boundary model)}}_{\mathbf{translation model}} \cdot P_B(b_i | \mu_i, \mu_{i-1}, ta_i, b_{i-1}, b_{i-2}, \mathbf{e}) \\ & \underbrace{\text{(length penalty)}}_{\mathbf{translation penalty}} \cdot LP(|\mu_i|) \end{split}$$

Traditional Form:

$$P_D = P(a_i | a_{i-1}, \mathbf{e})$$

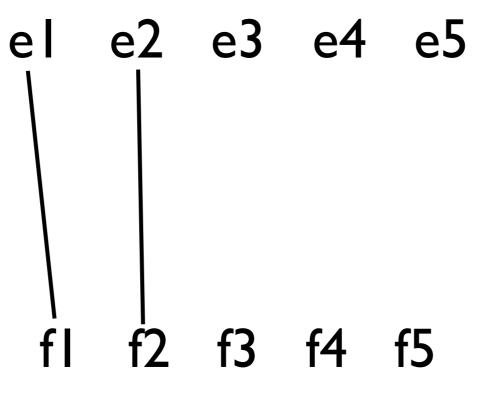
Motivation:



Traditional Form:

$$P_D = P(a_i | a_{i-1}, \mathbf{e})$$

Motivation:



Traditional form:

$$P_D = P(a_i | a_{i-1}, \mathbf{e})$$

Replaced with log-linear model:

$$P_D = \frac{e^{\phi(a_i, a_{i-1}, \mathbf{e})}}{\sum_i e^{\phi(a_i, a_{i-1}, \mathbf{e})}}$$

(Berg-Kirkpatrick 2010)

Actual form:

$$P_D(ta_i | ta_{i-1}, b_{i-1}, \mathbf{e})$$

- Richer context
- t variables capture morphological type, {prefix, root, suffix}

Distortion Model (5/5)

Distortion Features

Feature	Value
Morph Distance	
Word Distance	
Binned Morph Distance	forel
Binned Word Distance	forel
Morph State Transition	suffix-root
Same Target Word	FALSE
POS Tag Transition	DET-NN
Dep Relation	DET-NN
Null Alignment	FALSE

... and conjunctions

- Morpheme Translation Model $P_T(\mu_i | ta_i, b_{i-1}, b_{i-2}, \mu_{i-1}, \mathbf{e})$
 - Also depend on aligned source morpheme and POS
- Hierarchical Back-off: $P_{T}(\mu_{i}|e_{a_{i}}, t_{i}) = \frac{c(\mu_{i}, e_{a_{i}}, t_{i}) + \alpha_{2}P_{2}(\mu_{i}|t_{i})}{c(e_{a_{i}}, t_{i}) + \alpha_{2}}$ $P_{2}(\mu_{i}|t_{i}) = \frac{c(\mu_{i}, t_{i}) + \alpha_{i}P_{1}(\mu_{i})}{c(t_{i}) + \alpha_{i}}$ $P_{1}(\mu_{i}) = \frac{c(\mu_{i}) + \alpha_{0}P_{0}(\mu_{i})}{c(\cdot) + \alpha_{0}}$

Word Boundary Generation

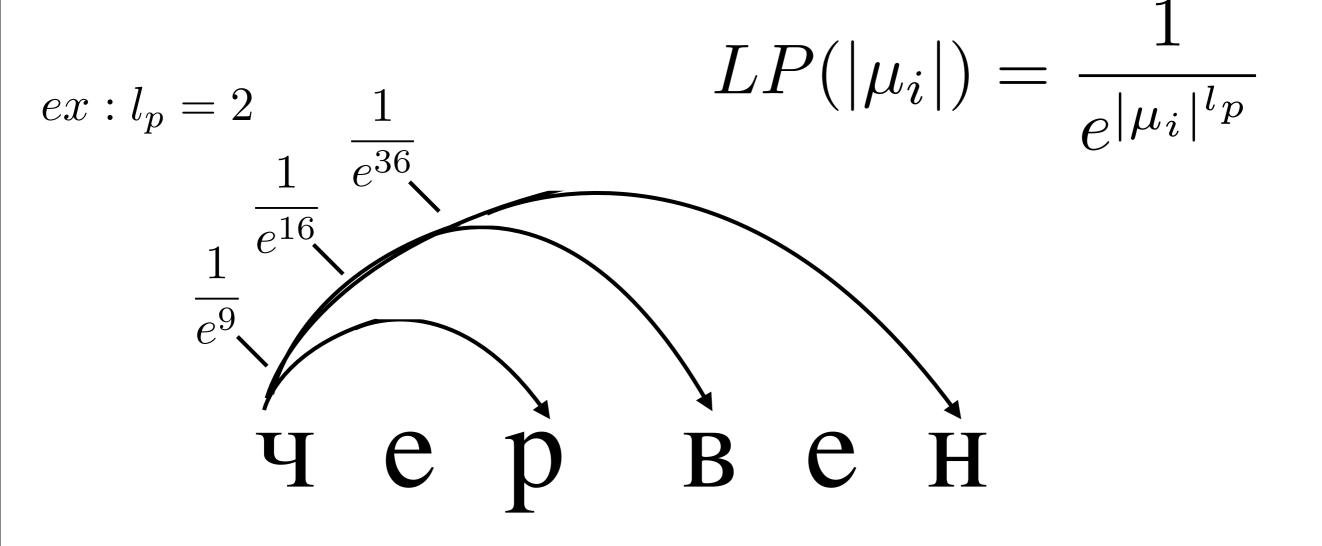
$$\cdot P_B(b_i|\mu_i,\mu_{i-1},ta_i,b_{i-1},b_{i-2},\mathbf{e})$$

• Useful as contextual information

- (Poon 09, Creutz & Lagus 07)
- Explicitly expressed in the model
 - Estimate what morphemes are likely to have which position in a word, number of morphemes in a word
- Observed on target side no increase to inference complexity

Length Penalty (1/1)

Length Penalty: (Chung & Gildea 09), (Liang & Klein 09)



Jason Naradowsky - University of Massachusetts Amherst

Overview

• Motivation: why morphemes?

• Our Model

- Preprocessing for Alignment
- Model Components

• Learning & Inference

- Experiments
 - Alignment
 - Segmentation

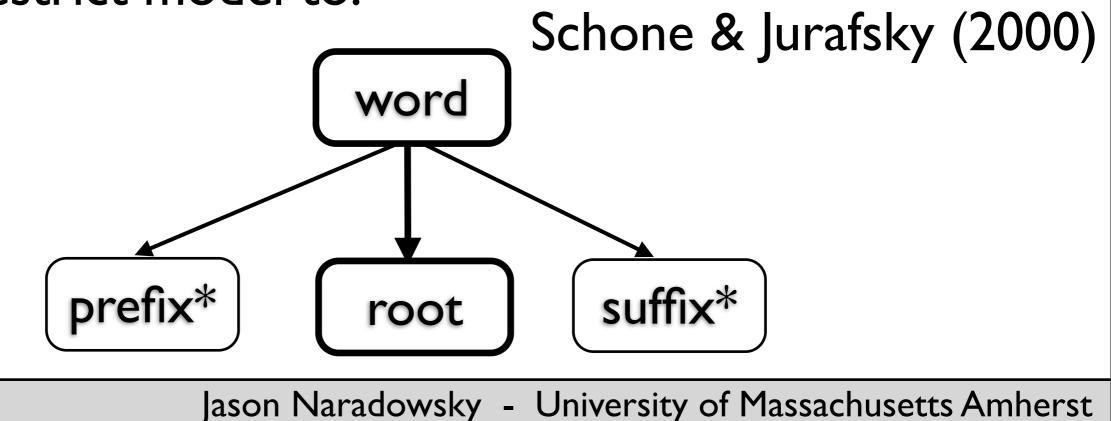
Inference, Learning & Pruning (1/2)

Inference

- Exact, polynomial (standard semi-markov with richer state-space)
- EM E-Step:
 - Counts taken for valid hidden variable configurations
- EM M-Step
 - LBFGS for Distortion model
 - Interpolation counts for translation and word boundary model (a way of backingoff to less conditioning)

Pruned Decoding

- Create a dictionary from the target corpus
 - Insert each word into a trie
- Derive list of top K most frequent affixes
- Restrict model to:



Overview

- Motivation: why morphemes?
- Our Model
 - Preprocessing for Alignment
 - Model Components
 - Learning & Inference
- Experiments
 - Alignment
 - Segmentation

Data

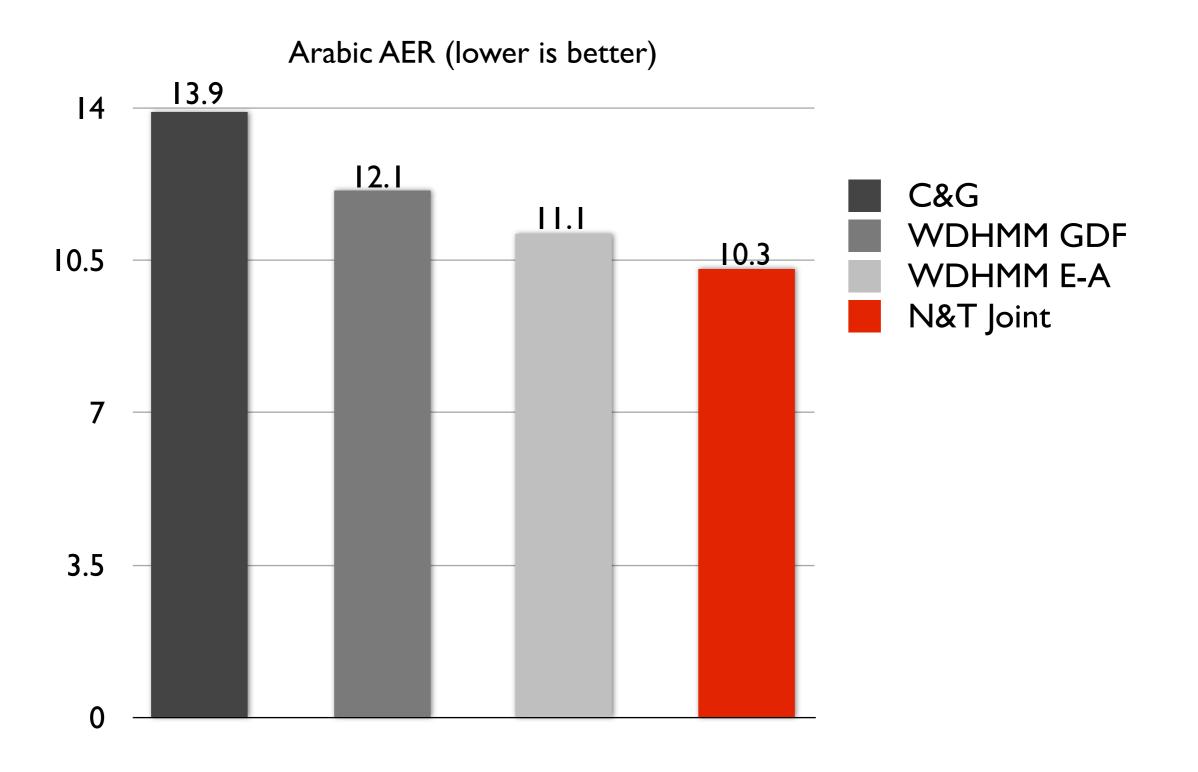
- Parallel phrases corpus (Snyder & Barzilay 2008)
 - 6,139 short phrases drawn from English, Hebrew, and Arabic Bible text.
 - Manually annotated Arabic with morpheme alignments
- Arabic Treebank
 - 140,265 words
- Both have gold morphological analyses
- Held-out data for smoothing, dictionary size, conditioning context, length penalties

Alignment Experiments

- Procedure
 - Typical joint training
 - Project morpheme alignments to word alignment
- Evaluated on Alignment Error Rate (AER)
- Results are for Arabic short phrases only!
- Baseline I: Chung & Gildea (2009)
- Baseline 2: WDHMM model of He (2007)

Alignment Results (2/2)

Alignment Results

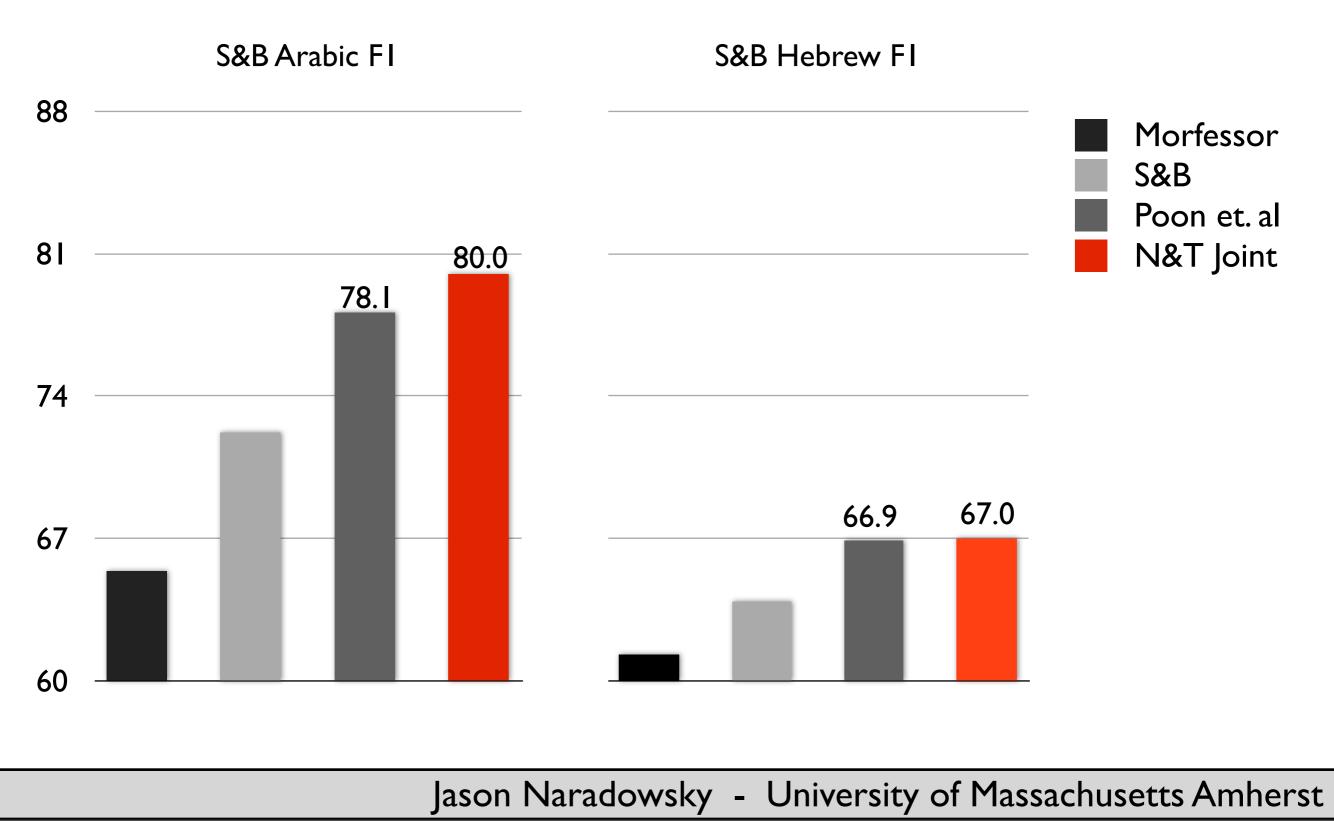


Jason Naradowsky - University of Massachusetts Amherst

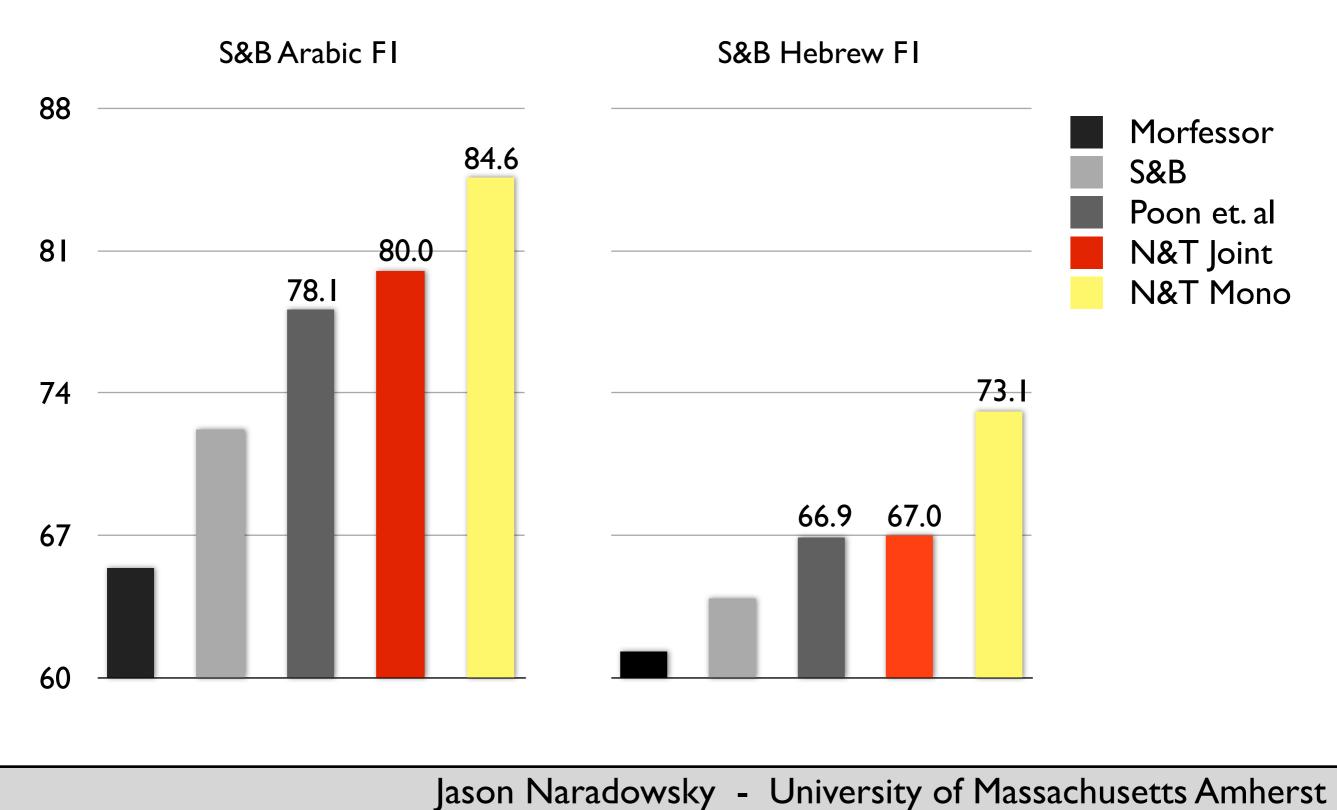
Segmentation Experiments

- Joint Model on Hebrew & Arabic parallel phrases corpus
- Monolingual model on all 3 data sets
- Measured by FI
- Baselines:
 - Chung & Gildea (2009)
 - Morfessor
 - Snyder & Barzilay (2008)
 - Poon et. al (2009)

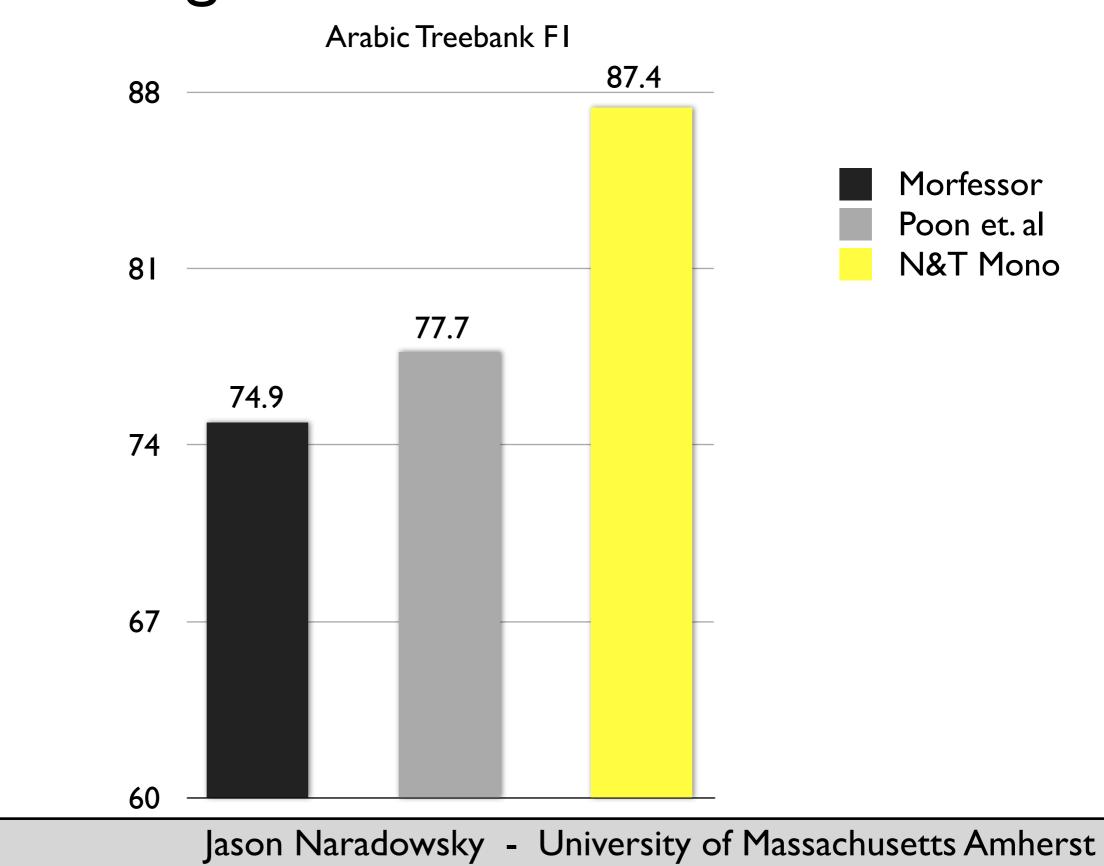
Segmentation Results



Segmentation Results



Segmentation Results



Sub-Model Results

	Arabic	Hebrew	ATB
No Dictionary	-0.8	-1.1	+0.4
No Boundary Modeling	-8.6	-0.4	-3.3
No Latent Morphology	-7.4	-13.6	-19.5

(Incremental, not cumulative loss)

Conclusions

- Contributions
 - HMM-based structure + word/morpheme aware feature-rich distortion model improves joint alignment and segmentation
 - Significant gains in morphological segmentation accuracy due to:
 - Richer Context
 - Latent morphological structure
 - Explicit modeling of word boundaries

Future Work

- Integrate with decoding for MT
- Higher-order dependencies & morphological phenomena
- Data & human evaluations

Jason Naradowsky - University of Massachusetts Amherst